Towards Decoupling Application Descriptions from their
Execution Environments

Journées TARANIS, Lyon

Quentin GUILLOTEAU?, Hélene COULLON?, Christian PEREZ?

2025-10-17
Ynria EX
2IMT Atlantique REPUBLIQUE ,
g FRANGCAISE anu\w

DE RECHERCHE

Liberté
Egalité
Fraternité

)W
_/ CLOUD

Context — Deployment of Cloud Applications

= deployment of cloud applications

= application = set of (micro)services Sh 9 5,
with interfaces, interconnected
= can be modeled as black box k

components with ports (e.g., </
USE/PROVIDE) for better L\ gb \—‘—‘\)"‘\ %'D
composability —_— =

= connected components = assembly

2/17

Context — Deployment of Cloud Applications

= deployment of cloud applications

. . : Hadnire Madwire A
= application = set of (micro)services
with interfaces, interconnected on 9 \ Se

= can be modeled as black box R ——’&——

components with ports (e.g., \L/ Madwre s
USE/PROVIDE) for better
- 4 %D
composability b
— Madaiiec

= connected components = assembly

— Software components need to be deployed onto “machines”

2/17

Resources, Provisioning, and Config. Management

What even are “machines”?

Does not have to be machines ~~ VMs, containers, baremetal, etc.

— “Resources” ~~ Execution units

Usually:

1. Provisioning (e.g., via Terraform):
= Descriptions of the resources
= Manual, depends on the tool used
2. Configuration Management (e.g., with Ansible):
= Installation/configuration/etc.
= Might depend on the resources

3/17

Resources, Provisioning, and Config. Management

What even are “machines”?

Does not have to be machines ~~ VMs, containers, baremetal, etc.

— “Resources” ~~ Execution units

Usually:

1. Provisioning (e.g., via Terraform):
= Descriptions of the resources
= Manual, depends on the tool used
2. Configuration Management (e.g., with Ansible):
= Installation/configuration/etc.
= Might depend on the resources

— Mapping between the resources and the components?

3/17

Motivations and Research Statement

Research Statement

How to model component assemblies to support their deployment in various
execution contexts?

4/17

Motivations and Research Statement

Research Statement

How to model component assemblies to support their deployment in various
execution contexts?

Motivations — Portability

= Application developer not responsible to execution context
= Avoiding vendor-locking

= Multi-cloud deployments

= Resource heterogeneity

4/17

Motivations and Research Statement

Research Statement

How to model component assemblies to support their deployment in various
execution contexts?

Motivations — Portability

Motivations — Unavailable Services / Urgent Computing
= Resource provider has some issue
= Some resources or services are not available

= but need to deploy the application right now, with whatever resources available

4/17

Modelisation

Model — The Main Idea

~+ Model resources as components

F__\ ;c86
ARM

L{\

] o e

5/17

Model — Components, ResourcePorts, and Attributes

= Components have the classical USE/PROVIDE ports
but also ResourcePorts G Y\U\{- — @
= port types (eq. to use/provide): MP
CONTAINED/CONTAINS
= models where a component is deployed

CONTAINED

= One port = one resource

= One component can model several resources

. . . CONTAINS
= Set of functional attributes linked to the ports

(e.g., CPU, MEMORY, etc.)

= Set of non-functional attributes linked to the ports RCSOU(CQ‘\
(e.g., FLOPs, CO2/W, etc.) '

6/17

Model — Instances and Assemblies

Instances

Instance = Component Type + ldentifier
(For both applicative and resource components!)

7/17

Model — Instances and Assemblies

= Set of component instances

= Port Connections

= between application ports
= but also between ResourcePorts

7/17

Model — Instances and Assemblies

Instances — Component Type + ID
Assembly — Set of Component Instances + Port Connections

Incomplete Assembly

Assembly where at least one ResourcePort of type CONTAINED is not connected

Complete Assembly

Assembly where all the ResourcePorts of type CONTAINED are connected

— A complete assembly is “deployable”

7/17

How to go from an incomplete to a complete assembly?

Mapper — Definition
Mapper
Mapper : Assembly — Assembly

= Only manipulates ResourcePorts

= Does not have to return a complete assembly (i.e., can solve a sub-problem)

8/17

Mapper — Definition

Mapper

Mapper : Assembly x Universe — Assembly

= Only manipulates ResourcePorts

= Does not have to return a complete assembly (i.e., can solve a sub-problem)

Universe
= Set of resource component instances: resources already available
= Set of resource component types: resources that can be instantiated
= A relation to model if a resource can be deployed onto another

< Can be generated based on the state of the platform(s)

8/17

Mapper — Definition

Mapper

Mapper : Assembly x Universe — Assembly

Universe — Set of resource instances and types to complete assemblies

Assembly

Port Connections

Component Instances
Assembly
Universe g
Port Connections
Resource Hierachy Mapperl
Component Instances
Assembly

Available Types
Universe b
. Port Connections
Available Instances Resource Hierachy Mapper2
Component Instances

Available Types
Available Instances 8/ 17

Mapper — Examples of Mappers

Warning!: We are not proposing new placement algorithms!

Simple Greedy Mapper
= for each unconnected CONTAINED ports

= go through the set of resources instances and see if one can connect
= if not, go through the set of resources types, and see if one can connect, if so
instantiate this resource

= continue until no CONTAINED port is left unconnected

Integration with Constraint Solvers (via Minizinc)
= Difficult to express our problem as a simple variant of knapsack/bin-packing ...
= A “flat” representation of the problem

= Have to “instantiate” the resource types to feed the solver: how many? 0/17

Ok, we have a complete assembly, now what ?

Assembly — Transformation into Concerto

We need a way to execute/deploy our assemblies

10/17

Assembly — Transformation into Concerto

We need a way to execute/deploy our assemblies
— We choose Concerto

10/17

Assembly — Transformation into Concerto

We need a way to execute/deploy our assemblies
— We choose Concerto
Why Concerto?
= Performance!

= and support for reconfiguration (cf. perspectives)

Transformation into Concerto
= We transform the Assembly in our model into a Concerto assembly
= All of our components have a Concerto implementation in Python

= (behavior support = “only pushB(start)")

10/17

Implementation / Evaluation

Implementation / Evaluation

= Realization of our Model in Nickel* (JSON + types + contracts +)

= Slight changes of Concerto (new port type, add parameters to components)

= Implemented several resource components (i.e., in our model and in Concerto)

Grid’5000 (basic env.), Kadeploy,
QEMU (%86, arm64), VM on Grid'5000,
Docker,

K3S cluster (control node + agents)
preallocated resource (e.g., laptop)

lhttps://nickel-lang.org/

11/17

https://nickel-lang.org/

Scenario — Gitea and Cl Runners

Assembly

= Gitea: Git hosting service
= K3S (http, DB, storage)
= Cl runners

= Docker container
= x86 and arm64

Scenario G\
Deploy the same assembly ... A5 7 .)\r——’
= ... in production (Grid'5000) A \

= ... in “incomplete” prod.

= ... on my laptop (dev)
12/17

Scenario — Gitea and Cl Runners — Production

1y
~\/0——[%1\" 7&%\"_{
\ = Had to deploy own
P(Q\"\ K3S cluster

= using one x86 node

(dahu) for runner

= using one arm64
node (estats) for

runner

13/17

Scenario — Gitea and Cl Runners — Production

\/""l Ronts \r—"{"“l@“”“‘»}
\ = Had to deploy own
P(Q\"\ K3S cluster

= using one x86 node

(dahu) for runner

Co&*ﬁ/ aé“"‘" (GSK GS’“&S = using one arm64

node (estats) for

runner

13/17

Scenario — Gitea and Cl Runners — Production

N _
: ~\/.)..—l h«\'\‘{%\l——"‘@""l&s“w
G&m = Had to deploy own
Ru““‘&%\'\ K3S cluster

= using one x86 node

T T (dahu) for runner
e = using one arm64
Co's’ ag“""— [65/'(“1&5_4 node (estats) for
runner
Jesxdav] |G5K

13/17

Next Scenario: “Argh! No more arm64 node available..."

Scenario — Gitea and Cl Runners — Incomplete Production

H““““ze*"{"“@s“”"“}

\ P(Q\"\ = no arm64 node

available!

= use a x86 node +
QEMU

Q&\ﬁ/ 030“" = “deep

J-_ encapsulation”!
G5K

legk.daﬁvﬁl

—

14/17

Scenario — Gitea and Cl Runners — Incomplete Production

H““““ze*"{"“““”"“}

\ P(Q\"\ = no arm64 node

available!

= use a x86 node +
QEMU

Q&\ﬁ/ 030‘ é-bA'R"\ = “deep

encapsulation”!

Jesx] |GK

—

14/17

Scenario — Gitea and Cl Runners — Incomplete Production

H““““ze*"{"“““”"“}

\ = no arm64 node
RQJN available!
= use a x86 node +
QEMU
= “deep
aguw A«R!‘\
G&*ﬁ’ 6_’ encapsulation”!

T

|ﬁi [Cok dab] @

—

14/17

Next Scenario: “Let me test something on my laptop”

Scenario — Gitea and Cl Runners — Development

h«\'\‘-{%\l——"‘ﬁ = need to reduce the

resource
\ requirements
P(Q\"\ (functional

attributes) to fit on

laptop
= K3S needs Debian

y[aﬁ

> RN

M);L_,/J = VM for K3S cluster
and VM for arm

! Y quk‘»{)? \ worker

15/17

Conclusion & Perspectives

Conclusion & Perspectives

Pb: “"How to model assemblies to support their execution in various contexts?”

Conclusion and Analysis
v" Model to express application assemblies independently from the resources

Allow for portability of assemblies, and heterogeneous deployments

v
v' Able to model complex deep “encapsulation levels”
v

Can generate problem for a solver, and transform the output into Concerto

Q

Resource components not (yet) too difficult to implement in Concerto

Q

Might be difficult for components to communicate if “too deep” in encapsulation

16/17

Conclusion & Perspectives

Pb: “"How to model assemblies to support their execution in various contexts?”

Conclusion and Analysis

It kinda works!

Perspectives
= Reconfiguration!
= Support variants of components, composites, auto-wiring (?)
= Software environments
= Network, storage elements as resources 7
= Allow the Mapper to change the parameters of the resource components

16/17

Some Self-Reflection...

By making deployments easier/optimized, we
also made more deployments possible...

— Are we participating in the acceleration of
the Cloud?

17/17

The Global Picture

@/ t’-_@pf)&f -
\\A b . ot
A< w) i ® E Bocaro

Categories of Resource Components

Applicative Components

= Uses one, or more, resources

= Does not provide any resource

| Gomp

19/17

Categories of Resource Components

Applicative Components

Transformers/Converters

= “Transform” one resource into another one

= Use one resource, provide one resource (:
= e.g., Virtual Machines, Containers, MP

19/17

Categories of Resource Components

Applicative Components

Transformers/Converters

Resources Groups C
= Gather several resources into a single interface MP

= e.g., Kubernetes

19/17

Categories of Resource Components

Applicative Components
Transformers/Converters

Resources Groups

Allocations) CD o
mp

= Already allocated resources

= Resources acquired via allocation
= Only provides resource(s)

= e.g., local machine, Grid’5000, AWS

19/17

	Modelisation
	Implementation / Evaluation
	Conclusion & Perspectives

