
Towards Decoupling Application Descriptions from their
Execution Environments
Journées TARANIS, Lyon

Quentin GUILLOTEAU1, Hélène COULLON2, Christian PEREZ1

2025-10-17
1Inria
2IMT Atlantique



Context – Deployment of Cloud Applications

• deployment of cloud applications
• application = set of (micro)services

with interfaces, interconnected
• can be modeled as black box

components with ports (e.g.,
USE/PROVIDE) for better
composability

• connected components = assembly

↪→ Software components need to be deployed onto “machines”

2/17



Context – Deployment of Cloud Applications

• deployment of cloud applications
• application = set of (micro)services

with interfaces, interconnected
• can be modeled as black box

components with ports (e.g.,
USE/PROVIDE) for better
composability

• connected components = assembly

↪→ Software components need to be deployed onto “machines”

2/17



Resources, Provisioning, and Config. Management

What even are “machines”?
Does not have to be machines ⇝ VMs, containers, baremetal, etc.

↪→ “Resources” ⇝ Execution units

Usually:
1. Provisioning (e.g., via Terraform):

• Descriptions of the resources
• Manual, depends on the tool used

2. Configuration Management (e.g., with Ansible):
• Installation/configuration/etc.
• Might depend on the resources

↪→ Mapping between the resources and the components?

3/17



Resources, Provisioning, and Config. Management

What even are “machines”?
Does not have to be machines ⇝ VMs, containers, baremetal, etc.

↪→ “Resources” ⇝ Execution units

Usually:
1. Provisioning (e.g., via Terraform):

• Descriptions of the resources
• Manual, depends on the tool used

2. Configuration Management (e.g., with Ansible):
• Installation/configuration/etc.
• Might depend on the resources

↪→ Mapping between the resources and the components?
3/17



Motivations and Research Statement

Research Statement

How to model component assemblies to support their deployment in various
execution contexts?

Motivations – Portability

Motivations – Unavailable Services / Urgent Computing

4/17



Motivations and Research Statement

Research Statement

How to model component assemblies to support their deployment in various
execution contexts?

Motivations – Portability

• Application developer not responsible to execution context
• Avoiding vendor-locking
• Multi-cloud deployments
• Resource heterogeneity

Motivations – Unavailable Services / Urgent Computing

4/17



Motivations and Research Statement

Research Statement

How to model component assemblies to support their deployment in various
execution contexts?

Motivations – Portability

Motivations – Unavailable Services / Urgent Computing

• Resource provider has some issue
• Some resources or services are not available
• but need to deploy the application right now, with whatever resources available

4/17



Modelisation



Model – The Main Idea

⇝ Model resources as components

5/17



Model – Components, ResourcePorts, and Attributes

• Components have the classical USE/PROVIDE ports
• but also ResourcePorts

• port types (eq. to use/provide):
CONTAINED/CONTAINS

• models where a component is deployed
• One port = one resource
• One component can model several resources

• Set of functional attributes linked to the ports
(e.g., CPU, MEMORY, etc.)

• Set of non-functional attributes linked to the ports
(e.g., FLOPs, CO2/W, etc.)

6/17



Model – Instances and Assemblies

Instances

– Component Type + ID

Instance = Component Type + Identifier
(For both applicative and resource components!)

Component Type = Ports + ResourcePorts + Attributes

Assembly

– Set of Component Instances + Port Connections

Incomplete Assembly

Assembly where at least one ResourcePort of type CONTAINED is not connected

Complete Assembly

Assembly where all the ResourcePorts of type CONTAINED are connected

↪→ A complete assembly is “deployable”

How to go from an incomplete to a complete assembly?

7/17



Model – Instances and Assemblies

Instances – Component Type + ID

Assembly

– Set of Component Instances + Port Connections

• Set of component instances
• Port Connections

• between application ports
• but also between ResourcePorts

Incomplete Assembly

Assembly where at least one ResourcePort of type CONTAINED is not connected

Complete Assembly

Assembly where all the ResourcePorts of type CONTAINED are connected

↪→ A complete assembly is “deployable”

How to go from an incomplete to a complete assembly?

7/17



Model – Instances and Assemblies

Instances – Component Type + ID

Assembly – Set of Component Instances + Port Connections

Incomplete Assembly

Assembly where at least one ResourcePort of type CONTAINED is not connected

Complete Assembly

Assembly where all the ResourcePorts of type CONTAINED are connected

↪→ A complete assembly is “deployable”

How to go from an incomplete to a complete assembly?

7/17



Model – Instances and Assemblies

Instances – Component Type + ID

Assembly – Set of Component Instances + Port Connections

Incomplete Assembly

Assembly where at least one ResourcePort of type CONTAINED is not connected

Complete Assembly

Assembly where all the ResourcePorts of type CONTAINED are connected

↪→ A complete assembly is “deployable”

How to go from an incomplete to a complete assembly?

7/17



Mapper – Definition

Mapper

Mapper : Assembly → Assembly

• Only manipulates ResourcePorts
• Does not have to return a complete assembly (i.e., can solve a sub-problem)

Universe

– Set of resource instances and types to complete assemblies

Assembly

Assembly

Assembly

Universe

Universe

Component Instances

Mapper1

Port Connections

Component Instances

Mapper2

Port Connections

Component Instances

Port Connections

Available Instances

Available Types

Resource Hierachy

Available Instances

Available Types

Resource Hierachy

8/17



Mapper – Definition

Mapper

Mapper : Assembly × Universe → Assembly

• Only manipulates ResourcePorts
• Does not have to return a complete assembly (i.e., can solve a sub-problem)

Universe

– Set of resource instances and types to complete assemblies

• Set of resource component instances: resources already available
• Set of resource component types: resources that can be instantiated
• A relation to model if a resource can be deployed onto another

↪→ Can be generated based on the state of the platform(s)

Assembly

Assembly

Assembly

Universe

Universe

Component Instances

Mapper1

Port Connections

Component Instances

Mapper2

Port Connections

Component Instances

Port Connections

Available Instances

Available Types

Resource Hierachy

Available Instances

Available Types

Resource Hierachy

8/17



Mapper – Definition

Mapper

Mapper : Assembly × Universe → Assembly

Universe – Set of resource instances and types to complete assemblies

Assembly

Assembly

Assembly

Universe

Universe

Component Instances

Mapper1

Port Connections

Component Instances

Mapper2

Port Connections

Component Instances

Port Connections

Available Instances

Available Types

Resource Hierachy

Available Instances

Available Types

Resource Hierachy

8/17



Mapper – Examples of Mappers

Warning!: We are not proposing new placement algorithms!

Simple Greedy Mapper

• for each unconnected CONTAINED ports
• go through the set of resources instances and see if one can connect
• if not, go through the set of resources types, and see if one can connect, if so

instantiate this resource

• continue until no CONTAINED port is left unconnected (might need to backtrack)

Integration with Constraint Solvers (via Minizinc)

• Difficult to express our problem as a simple variant of knapsack/bin-packing ...
• A “flat” representation of the problem
• Have to “instantiate” the resource types to feed the solver: how many?

Ok, we have a complete assembly, now what ?

9/17



Mapper – Examples of Mappers

Warning!: We are not proposing new placement algorithms!

Simple Greedy Mapper

• for each unconnected CONTAINED ports
• go through the set of resources instances and see if one can connect
• if not, go through the set of resources types, and see if one can connect, if so

instantiate this resource

• continue until no CONTAINED port is left unconnected (might need to backtrack)

Integration with Constraint Solvers (via Minizinc)

• Difficult to express our problem as a simple variant of knapsack/bin-packing ...
• A “flat” representation of the problem
• Have to “instantiate” the resource types to feed the solver: how many?

Ok, we have a complete assembly, now what ?

9/17



Assembly – Transformation into Concerto

We need a way to execute/deploy our assemblies

↪→ We choose Concerto

Why Concerto?

• Performance!
• and support for reconfiguration (cf. perspectives)

Transformation into Concerto

• We transform the Assembly in our model into a Concerto assembly
• All of our components have a Concerto implementation in Python
• (behavior support = “only pushB(start)”)

10/17



Assembly – Transformation into Concerto

We need a way to execute/deploy our assemblies
↪→ We choose Concerto

Why Concerto?

• Performance!
• and support for reconfiguration (cf. perspectives)

Transformation into Concerto

• We transform the Assembly in our model into a Concerto assembly
• All of our components have a Concerto implementation in Python
• (behavior support = “only pushB(start)”)

10/17



Assembly – Transformation into Concerto

We need a way to execute/deploy our assemblies
↪→ We choose Concerto

Why Concerto?

• Performance!
• and support for reconfiguration (cf. perspectives)

Transformation into Concerto

• We transform the Assembly in our model into a Concerto assembly
• All of our components have a Concerto implementation in Python
• (behavior support = “only pushB(start)”)

10/17



Implementation / Evaluation



Implementation / Evaluation

• Realization of our Model in Nickel1 (JSON + types + contracts + λ)
• Slight changes of Concerto (new port type, add parameters to components)
• Implemented several resource components (i.e., in our model and in Concerto)

• Grid’5000 (basic env.), Kadeploy,
• QEMU (x86, arm64), VM on Grid’5000,
• Docker,
• K3S cluster (control node + agents)
• preallocated resource (e.g., laptop)

1https://nickel-lang.org/

11/17

https://nickel-lang.org/


Scenario – Gitea and CI Runners

Assembly

• Gitea: Git hosting service
• K3S (http, DB, storage)

• CI runners
• Docker container
• x86 and arm64

Scenario
Deploy the same assembly ...

• ... in production (Grid’5000)
• ... in “incomplete” prod.
• ... on my laptop (dev)

12/17



Scenario – Gitea and CI Runners – Production

• Had to deploy own
K3S cluster

• using one x86 node
(dahu) for runner

• using one arm64
node (estats) for
runner

Next Scenario: “Argh! No more arm64 node available...”

13/17



Scenario – Gitea and CI Runners – Production

• Had to deploy own
K3S cluster

• using one x86 node
(dahu) for runner

• using one arm64
node (estats) for
runner

Next Scenario: “Argh! No more arm64 node available...”

13/17



Scenario – Gitea and CI Runners – Production

• Had to deploy own
K3S cluster

• using one x86 node
(dahu) for runner

• using one arm64
node (estats) for
runner

Next Scenario: “Argh! No more arm64 node available...”

13/17



Scenario – Gitea and CI Runners – Production

• Had to deploy own
K3S cluster

• using one x86 node
(dahu) for runner

• using one arm64
node (estats) for
runner

Next Scenario: “Argh! No more arm64 node available...”

13/17



Scenario – Gitea and CI Runners – Incomplete Production

• no arm64 node
available!

• use a x86 node +
QEMU

• “deep
encapsulation”!

Next Scenario: “Let me test something on my laptop”

14/17



Scenario – Gitea and CI Runners – Incomplete Production

• no arm64 node
available!

• use a x86 node +
QEMU

• “deep
encapsulation”!

Next Scenario: “Let me test something on my laptop”

14/17



Scenario – Gitea and CI Runners – Incomplete Production

• no arm64 node
available!

• use a x86 node +
QEMU

• “deep
encapsulation”!

Next Scenario: “Let me test something on my laptop”

14/17



Scenario – Gitea and CI Runners – Incomplete Production

• no arm64 node
available!

• use a x86 node +
QEMU

• “deep
encapsulation”!

Next Scenario: “Let me test something on my laptop”

14/17



Scenario – Gitea and CI Runners – Development

• need to reduce the
resource
requirements
(functional
attributes) to fit on
laptop

• K3S needs Debian
• VM for K3S cluster

and VM for arm
worker

15/17



Conclusion & Perspectives



Conclusion & Perspectives

Pb: “How to model assemblies to support their execution in various contexts?”

Conclusion and Analysis

✓ Model to express application assemblies independently from the resources
✓ Allow for portability of assemblies, and heterogeneous deployments
✓ Able to model complex deep “encapsulation levels”
✓ Can generate problem for a solver, and transform the output into Concerto
≈ Resource components not (yet) too difficult to implement in Concerto
≈ Might be difficult for components to communicate if “too deep” in encapsulation

Perspectives

• Reconfiguration!
• Support variants of components, composites, auto-wiring (?)
• Software environments
• Network, storage elements as resources ?
• Allow the Mapper to change the parameters of the resource components

16/17



Conclusion & Perspectives

Pb: “How to model assemblies to support their execution in various contexts?”

Conclusion and Analysis

It kinda works!

Perspectives

• Reconfiguration!
• Support variants of components, composites, auto-wiring (?)
• Software environments
• Network, storage elements as resources ?
• Allow the Mapper to change the parameters of the resource components

16/17



Some Self-Reflection...

By making deployments easier/optimized, we
also made more deployments possible...

↪→ Are we participating in the acceleration of
the Cloud?

17/17



The Global Picture

18/17



Categories of Resource Components

Applicative Components

• Uses one, or more, resources
• Does not provide any resource

Transformers/Converters

Resources Groups

Allocations

19/17



Categories of Resource Components

Applicative Components

Transformers/Converters

• “Transform” one resource into another one
• Use one resource, provide one resource
• e.g., Virtual Machines, Containers,

Resources Groups

Allocations

19/17



Categories of Resource Components

Applicative Components

Transformers/Converters

Resources Groups

• Gather several resources into a single interface
• e.g., Kubernetes

Allocations

19/17



Categories of Resource Components

Applicative Components

Transformers/Converters

Resources Groups

Allocations

• Already allocated resources
• Resources acquired via allocation
• Only provides resource(s)
• e.g., local machine, Grid’5000, AWS

19/17


	Modelisation
	Implementation / Evaluation
	Conclusion & Perspectives

