
Adaptive Parallel Mergesort in Rust

Quentin Guilloteau

Monday 17th June, 2019

Supervisor: Frederic Wagner (LIG)

Outline

1 Introduction

2 Presentation of the Algorithm

3 Optimizations
Time Optimization
Memory Usage Optimization
Performances

4 3-way Mergesort

5 Conclusion & Future Work

6 CTRL-A - CTRL-CiGri

2/24

Introduction

3/24

Introduction

Motivations

Fork-Join → Work-Stealing/Task-based → Rayon-Adaptive
This internship: impact of the abstraction on performance ?

Schedulers

(a) Join (b) Join-Context

4/24

http://www-id.imag.fr/Laboratoire/Membres/Wagner_Frederic/rayon-adaptive.html
http://www-id.imag.fr/Laboratoire/Membres/Wagner_Frederic/rayon-adaptive.html

Presentation of the Algorithm

5/24

Presentation of the Algorithm

Algorithm

Classical ”divide and conquer” hybrid Mergesort using TimSort

Data Structure

1 3 5

2 4

1 2 3 4 5merge , =

6/24

Optimizations

7/24

Optimizations

Outline

Before comparing parallel sorts: let’s optimize !

1 Optimize time

2 Optimize memory usage

8/24

Time Optimization

9/24

Optimizations - Extra memcpy

Problem

First buffer points to user array.
Output data not necessary in the first buffer at the end.

Idea

Try to use only two buffers, rely on the third one if needed.

Rule when Merging

even depth → merge in buffer 2, if not possible buffer 3

odd depth → merge in buffer 1, if not possible buffer 3

10/24

Optimizations - Extra memcpy

Idea

Try to use only two buffers and rely only on the third one if needed.

Finding the new block size

Let A(B) be a k-way mergesort. Let n be the size of the input.
Height of the merging tree:

H =

⌈
logk

(n
B

)⌉
→ H ′ =

⌈
H

2

⌉
× 2→ B ′ =

⌈
n

kH′

⌉
(1)

11/24

Memory Usage Optimization

12/24

Optimizations - 2 Buffers

Problem

Non negligible memory cost: 3× 400Mb for 100M uint32 t

Situations where 3 buffers are needed

3rd buffer required when merging data from different depths parity.

Buffer 3

Buffer 2

Buf 1 Buf 1

Buffer 1

Buffer 1

Buffer 1 Level 0

Level 1

Level 2
13/24

Optimizations - 2 Buffers

Solution: Join

If array of size n and k-way mergesort:

n = (k − 1)× n1 + n2 =⇒ |n1 − n2| ≤ k − 1 (2)

Limiting case: n2 > B ≥ n1 =⇒ B + (k − 1) ≥ n2 > n1
Increase the initial block size by k − 1

Solution: Join-Context

Alternate the calls to the schedulers:

Even → use Join-Context

Odd → use Join

14/24

Optimizations - 2 Buffers: Join-Context

Join-Context
Join

15/24

Performances

16/24

Performances

Figure: Comparison between schedulers

17/24

Performances

Figure: Comparison with Rayon and OMP

17/24

3-way Mergesort

18/24

3-way Mergesort

Figure: Split in 3 with 3 threads

19/24

3-way Mergesort: Performances

Figure: Comparison between schedulers

20/24

Conclusion & Future Work

21/24

Conclusion & Future Work

Conclusion

Manage to beat/compete with standard parallel sorts

Room for improvement: reversed arrays

Still a preliminary work: k-way mergesort

22/24

CTRL-A - CTRL-CiGri

23/24

CTRL-A - CTRL-CiGri

Title

Minimizing Cluster Under-Use with a Control-Based Approach

Some notions

OAR: Scheduler of the computing clusters

CiGri: Lightweight grid system which exploits the unused
resources of a set of computing clusters

The idea

Feed the information from OAR into a feedback loop, to control
how CiGri behaves in order to maximize the utilization of the
resources, and to avoid overload.

24/24

Questions ?

Thank you for your attention.
Time for Questions !

25/24

3-way Mergesort: Performances

Figure: Comparison between schedulers

26/24

2-way Mergesort: Sorted arrays

Figure: Comparison between schedulers

27/24

2-way Mergesort: Reversed arrays

Figure: Comparison between schedulers

28/24

2-way Mergesort: Random arrays

Figure: Comparison between schedulers

29/24

	Introduction
	Presentation of the Algorithm
	Optimizations
	Time Optimization
	Memory Usage Optimization
	Performances

	3-way Mergesort
	Conclusion & Future Work
	CTRL-A - CTRL-CiGri

