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High Performance Computing (HPC)

Computations too demanding ~ need several powerful machines

< expensive ~ shared ~
2/29



Resouces and Job Management System

HPC Jobs & job submission

cit)
= Some computations users RJIMS

= Static resource allocation

= Static time allocation

HPC Cluster

T ]
= Computing nodes @ @

= |nterconnected

computing nodes file system
= High speed network, I/O Resources and Jobs Management System [Blel7]
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Resouces and Job Management System
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Harvesting Idle Resources

: Use smaller, killable jobs (e.g., Big Data [Mer+17], FaaS [Prz+22])

CiGri [GRCO7]

= Grid middleware used at Gricad Bag-of Tasks

= Bag-of-tasks: many, multi-parametric

= Best-effort Jobs: Lowest priority

= Objectives: vocal
= Collect grid idle resources == H H
1 1 ]

= Reduce pressure on RIMS

= Submits like a periodic tap 00000 O0O00O00 compute

L 000000 0O0O00O Nodes
= submits jobs then, Cluster 1 Cluster 2

= waits for all jobs to terminate

o I
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CiGri jobs [GRR22]

Example: BigGNSS [Dép+18]
Cumulative distribution function of BoT jobs exec times = A lot of satellites = a lot of data

for the Gricad and DAS2 grids
wl = Several stations ~ Campaigns

= Subdivision of the processing ~ Jobs

0.754

= Unique binary + different inputs

Proportion
o
@
o

biggnss
1.0e+07 -
0.25-
o 7.50+061
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3
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1s 10s  1m 1om  1h 10h 1d 10d 2 564064
Execution times of BoT jobs [
o . 0.0e+00_, T (mm 1
10 years, 44 Millions jobs 1s 10s1m 10m1ih 10h

Execution time [s] (log) 5/29



Problem formulation

» Harvesting ==~ Performance Degradation ~ Trade-off

— Unpredictability = runtime management
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Problem formulation

» Harvesting ==~ Performance Degradation ~ Trade-off

— Unpredictability = runtime management

In this PhD thesis

1. How to CiGri jobs to harvest idle resources with
degradation for priority users?

2. How to improve the and of experiments

on grid/cluster systems? 6/29



Harvesting idle resources



Runtime Management: Autonomic Computing (AC)

AC and the MAPE-K LOOp [KC03] Autonomic manager

Analyze Plan

. given
Monitor Knowledge Execute

= implementations: rules, Al, etc. 4
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Runtime Management: Autonomic Computing (AC) and Control Theory

AC and the MAPE-K LOOp [KC03] Autonomic manager

Analyze Plan

. given
Monitor Knowledge Execute

4

= implementations: rules, Al, etc.

Control Theory

= Regulate dynamical systems Disturbances

+
Reference Error Output
— g 1 Controller System
- Input

= physical systems

= mathematically proven properties

= performance, robustness,

Measure

Sensor
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1. Identify the goals

Identify the
goals

Use Control Theory to....

_____ Level 1
...harvest idle resources... 2
Identify the Devise the
.in a way knobs i model
e . Level 2
max cluster utilization =000 T
. . ( 5 6
min degradation of performance Design the J implement QT?S““"“
troller P| andintegrate | validate the
con the controller system
Level 3

= Focus on /O degradation Steps to design a controller [Fil+15]
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2. Identify the knobs

75 MBytes Files 100 MBytes Files

Actuators (1)
Number of jobs submitted by CiGri
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Fileserver Load
IS >
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N
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Feedback loop in CiGri

‘‘‘‘‘

} Campaign Local

Users

swmt 11
Cluster
;- - OAR S Schedule
ensors

A o OAR .
|
| —
| / N\
| loadavg 1/0
——————————————————————— File-Sys. < >

Reference value: acceptable 1oad on the File-System, chosen by system admins 10/29



3. Devise the model

First, a Model ... (i.e., how does the system behave without Control)
K k
y(k+1) =Y ajxy(k=i)+ Y bjxu(k-j)
i=0 j=0

... then a (P ) Controller (i.e., the Closed-Loop behavior)

(k) = K, x Error(k)

Methodology
Actuator: #jobs to sub ~ 1. Open-Loop experiments (fixed 1)
Sensor: FS Load ~y 2. Model parameters (aj, bj)

Error(k) = Reference — Sensor (k) 3. Choice controller behavior (K,) 11/29
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Devise the model - Open-Loop Experiments

System Identification and (Linear) Model Fitting
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3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~ab="7

13/29



3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~ a,b=7

13/29



3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~ a,b=7

In steady state (ss)

YSs:aXyss+bx
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3. Devise the model - First order model

s y(k+1)=axy(k)+bxu(k) ~a,b=7
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:b:yssx(l—a):(a+51f+ﬁz +yfu.)x(1-a)

YSs:aXyss+bx

= b=~ (fo+7f)x(1-a)

13/29



3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~a,b=7
In steady state (ss)

x(l—a):(a+ﬁlf+ﬁz +yfu.)x(1-a)

Yoo=axy.+bx =~b=y55

= b=~ (fo+7f)x(1-a)

Where are we?

Open-Loop
Experiments

13/29



3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~a,b=7
In steady state (ss)

x(l—a):(a+ﬁlf+ﬁz +yfu.)x(1-a)

Yo =axy,+bxu. — b=

= b=~ (fo+7f)x(1-a)

Where are we?

Open-Loop Model (1st order)
Experiments y(k+1)=axy(k)+bxu(k)

13/29



3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~a,b=7
In steady state (ss)

x(1-a) . (a+ pif + Pou. +yfu) x (1-a)

Yo =axy,+bxu. — b=

= b~ (Ba+7f)x(1-a)

Where are we?

Open-Loop Model (1st order) Controller Gains
Experiments y(k+1)=axy(k)+bxu(k) Ky, Ki,
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4. Design the controller

Closed loop behaviour of our system for different values of (ks, Mp)

Controller Gains are ... I ‘ U 075 I [FRICE]
functions of the model and

-
5

EES]

= ks: maximum time to steady state

» Mp: maximum overshoot allowed

o
®» ® 60 N & o ®

Output Values
RS
w
i
|
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L H

[
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5 10 15 20 5 10 5 20
Iterations
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4. Design the controller

Closed loop behaviour of our system for different values of (ks, Mp)

Controller Gains are ... I ‘ U 075 I [FFIC
functions of the model and
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» Mp: maximum overshoot allowed
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[

Non-Intrusive Harvesting .

= no overshoot 4fﬂf/fo" L
= but "fast" response 0
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5./6. Implement and validate the controller - Evaluation with synthetic jobs

Response of the Controlled System to a Step Perturbation

200 MBytes Files = constant reference

3 84 ic i
s 7 = synthetic jobs
@ 6 - .
3 5] = step disturbance
& 4
S
§ 31
g -
T 1

o]

200 MBytes Files

)
% 151
e}
S
%5 10
5
£ 57
=}
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0 2000 4000 6000 15,29
Time [s]



5./6. Implement and validate the controller - Evaluation with synthetic jobs

Response of the Controlled System to a Step Perturbation

200 MBytes Files = constant reference

2 ; = synthetic jobs
2 ] i W — . . _
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T 1 i
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Trade-off: Idleness versus Performance degradation (I/O Overhead)

Idle resources (%)

100

75

50

25

Cluster Usage by Writing Time of MADBench2

[
‘o ¢
[ Y ®
..
[ J
o O
. . Refi Val .

Objective R SR
0 200 40 600

Writing time Overhead (

0
s)

MADBench2 [Bor+07]
various reference values
compute idle resources
compute |/O overhead
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A note on controllers’ reusability

= Controllers to the identified system
= what if new cluster? new configuration?

= Grid/Cluster administrators
< not control theory experts!

= compared 3 controllers (w.r.t. portability,
guarantees, competence required)

= example: Portability vs. Performance

. for system
administrators

17/29



A note on controllers’ reusability

= Controllers to the identified system

= what if new cluster? new configuration?

= Grid/Cluster administrators
< not control theory experts!

= compared 3 controllers (w.r.t. portability,
guarantees, competence required)

= example: Portability vs. Performance

. for system
administrators

17/29



Control-based harvesting of idle resources: Wrapping up

Objectives
= Control CiGri submissions based on File-System load
.
= Can merge controllers!

= Guidelines for system administrators

Tutorial to introduce control theory to computer scientists

Limitations and Perspectives
= Tested with synthetic jobs ~ real trace
= Need more info about CiGri jobs' /O patterns
= Submissions to several clusters

= Sensor for Parallel File-System (PFS) ? 18/29



Control-based harvesting of idle resources: Wrapping up

Objectives

= Control CiGri submissions based on File-System load
n
= Can merge controllers!

= O [0, _

. Control Th-erAFy- to exploit such trade-offs

- TLuLvVIIdl LU 111l vUuULCCT Luliui vl LIICUIy LU LUIlIIpuLCtE DuicClhitiows

B SRR

Limitations and Perspectives
= Tested with synthetic jobs ~ real trace
= Need more info about CiGri jobs' /O patterns
= Submissions to several clusters

= Sensor for Parallel File-System (PFS) ? 18/29



Experiment costs and reproducibility



A grid middleware needs ... a grid!

required 1
to perform experiments
on a grid middleware like CiGri?

High

Cost (Energy/Development/Deployment)
Low

\
Modeled system Real system ’

Realism 19/29
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A grid middleware needs ... a grid!
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(=%
= Full scale: real environment ©, 73
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<]
= Reduced scale: real environment ©, E _.‘% Simutation
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[=]
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Emulating a full scale cluster by folding its deployment [Gui+23]

: Deploy more "virtual" resources on one physical machine

File System

Comms'Physical Res.

Virtual Res.

20/29
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Emulating a full scale cluster by folding its deployment [Gui+23]

: Deploy more "virtual" resources on one physical machine

File System + less resources deployed + real system/environment

+ represents full scale system - new job model: sleep +

Model of the breaking point in behavior based on folding ratio for OrangeFS

Reading Writing

'Physical Res.
Virtual Res.

Y
£ 10
[
Protocole:
o] St || m————t———————
= IOR [Cal23] 5 D 2 06 1 % %

. . Number of MPI processes per machine
= increase folding

= NFS, OrangeFS

Size of the file to read/write e 10M 4 100M = 500M + 1G : Model 20/29



Emulating a full scale cluster by folding its deployment [Gui+23]

: Deploy more "virtual" resources on one physical machine

File System + less resources deployed + real system/environment
i‘ f '§ i + represents full scale system - new job model: sleep +
1/0 ops.

— Folding is appropriate until a

Comm;. J
Physical Res.) Aty

Virtual Res.

Protocole:
0 A ——.
= |OR [Ca|23] 0 10 20 R 10
. . Number of MPI processes per machine
= increase folding

Size of the file to read/write e 10M 4 100M = 500M + 1G ! Model
= NFS, OrangeFS '

T T
20 30
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Complex Software Environments

Graph of CiGri's software dependencies
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Complex Software Environments
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Graph of CiGri's software dependencies

— and RJMS, PFS, jobs, etc. ~» very complex to manage/modify
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Complex Software Environments

3N ,,:;,,,,,, -/4 ‘

Graph of CiGri's software dependencies

— and RJMS, PFS, jobs, etc. ~» very complex to manage/modify

How to complex software

environments in a fashion?
21/29



Generating Distributed Software Environments

< Difficult, Time-consuming, Script-based tools, and process

THE #| EXPERIMENTERS EXCUSE
FOR LEGITIMATELY SLACKING OFF:

"MY IMAGE 15 BUILDING,"

HEY! GET BACK,
TO WORK!

~10/15 mins
— Easy to

THE #| EXPERIMENTERS EXCUSE
FOR LEGITIMATELY SLACKING OFF:

"MY EXPE IS5 DEPLOYING,"

HEY! GET BACK

~5/10 mins

: base image, apt mirror, git repository 22/29



Generating Distributed Software Environments

< Difficult, Time-consuming, Script-based tools, and process
THE #| EXPERIMENTERS EXCUSE THE #| EXPERIMENTERS EXCUSE
FOR LEGITIMATELY SLACKING OFF: FOR LEGITIMATELY SLACKING OFF:
MY IMAGE 15 BUILDING," ‘MY EXPE IS5 DEPLOYING,"

practices

~10/15 mins ~5/10 mins

— Easy to : base image, apt mirror, git repository 22/29



One tool, One platform

Environment description (3 times)

5 — — =

© docker-compose |Vagrant (Kameleon
+ W

C ¥ L4 X

th docker VM image

O ilocal Deployed (g5k)

‘So essentially, | want to create a debian12-nfs.qcow?2 for \V\Ms equivalent
to grid5000’s debian12-nfs image. One to achieve this would be
to install every single thing using the package manager and resolving conflicts
by hand. (Grid’5000 User, 2023)

23/29



One tool, One platform

Environment description (3 times)

9 —=1(1) —=1(2) —=1(3)
m - - —
© docker-compose |Vagrant (Kameleon
4 \y
C ¥ |4 : i - )
g i|docker VM |{ i|image
— Be able to distributed environments and then export

‘So essentially, | want to create a debian12-nfs.qcow? for \/Ms equivalent
to grid5000’s debian12-nfs image. One to achieve this would be
to install every single thing using the package manager and resolving conflicts
by hand.’ (Grid’5000 User, 2023)
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Functional package managers

Base Packages (b6a36171)
= Nix 3% Guix X

= packages = functions A

= inputs = dependencies

= body = commands to build the package
= base packages defined in Git
= sandbox, no side effect

= /nix/store/hash(inputs)-my-pkg

= immutable, read-only
] definition of $PATH G

= can build: container, VM, system images Resulting Package ﬁ

/~_Package
D gfs .

24/29



Functional package managers

Base Packages (10028b48)
= Nix 3% Guix X
= packages = functions
= inputs = dependencies
= body = commands to build the package

= base packages defined in Git .. Package

= sandbox, no side effect Q?fs'

= /nix/store/hash(inputs)-my-pkg

= immutable, read-only
] definition of $PATH G

= can build: container, VM, system images Resulting Package O
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NixOS Compose [Gui+22]

1 { pkgs, ... }:
2 let k3sToken = "..."; in {
3 roles = {
4 server = { pkgs, ... }: {
5 environment.systemPackages = with pkgs; [ .
. k3s gzip = Python + Nix (~ 4000 l.o.c.)
7 1;
: petworking fireuail. allovediCrrorts = [ = developing/deploying distributed systems
10 1;
i corvices k3s = { " (in Nix), multiple targets
12 enable = true;
" plkg S e ke = docker , VM, ramdisk, system image
15 extraFlags = "--agent-token ${k3sTokenl}"; ) )
. = can setup distributed envs
17 H
18 agent = { pkgs, ... }: { H .
19 environment.systemPackages = with pkgs; [ = bUIIdV deploy’ ConneCt
20 k3s gzip
2 1; . = contextualization (ssh keys, /etc/hosts, etc.)
22 services .k3s =
bl =t H . . .
: S = integration with Execo [Imb+13]
25 serverAddr = "https://server :6443";
26 token = k3sToken; | |
. . a few, but happy, users ®
28 X
B 25/29



Comparisons - Setting up a distributed environments on Grid’5000

Kameleon [Rui+15]

Construction Time with NFS [s]

nxc-g5k-ramdisk .
nxc-g5k-image 4 .

0 250 500 750 1000

=

base . base + hello

build ~ modify (add hello) ~ build

EnOSlib [Che+22]

flent
300 4
=
2,200 1
o —
=
F 100+ ———
ol _ m__H
BL:Hd Sub+bep|oy Provis.ioning Rl‘,ln
Phases
. EnOSlib nxc-g5k-ramdisk nxc-g5k-image

NixOS Compose ~» provisioning done in image
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Construction Time with NFS [s]

nxc-g5k-ramdisk .
nxc-g5k-image 4 .
0 250 500 750 1000

base . base + hello

build ~ modify (add hello) ~ build

EnOSlib [Che+22]
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< Fast builds, faster rebuilds ~ reduces development cycles

— Fast deploys, reduce provisioning phases



Experiment costs and reproducibility: Wrapping up

Objectives

Reduce cost of experimenting with
grid/cluster middlewares

Improve development cycles for
reproducible experiments

Limitations and Perspectives

More popular Parallel File-Systems
Source of the performance loss unclear
Other platforms for NixOS Compose
Hybrid /folded deployments

Simulation: PFS and sensors

Cost (Energy/Development/Deployment)

High

Low

Full scale

Reduced
scale

G 4
Sthdration

Modeled system

Real system

Realism

+
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Take Away: Reduced the time/energy cost to experi-

ment with distributed systems, and improve reproducibility



Concluding thoughts



Conclusion

How to harvest HPC idle resources while controlling the impact on the priority jobs?

Contributions

= Design/implement an Autonomic loop in CiGri...

= to control the load of the File-System ~ control overhead, avoid overload
= to reduce the wasted computing power (idle and killed)

= ... using Control Theory

= yields guarantees and explainability
= guidelines for system administrators, tutorial

= Reduce experiment costs

= reduce number of machines to deploy without loss of realism
= tool for developing and deploying reproducible distributed environments 28/29



CiGri
Improve usage of computing clusters

Folding
Reduce number of physical machines required to represent a full scale cluster

NixOS Compose
Reduce development time, and reduce "test" deployments
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CiGri
Improve usage of computing clusters

Folding
Reduce number of physical machines required to represent a full scale cluster

NixOS Compose
Reduce development time, and reduce "test" deployments

But can it introduce a ?

29/29
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How to choose the reference value?

» Normalized loadavg then fix to 75%, 90%, 95%, etc.

Load

o - N o &

o =+ N o &

= How much

to sustain?

= dynamic reference value
= based on number of priority jobs and historical 1/0 data (e.g., Darshan [Car+11])

Load of a Write request by file size and sub. size

el | s

Priority jobs
F (Disturbance)
Yprio,k dy
fimodel
Uk
Controller System
Yk
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Beyond idle resources

Wasted computing power: ldle resources, but also !

o = variations in

Priority jobs
(Disturbance) available resources
J = New sensor

Fmax 425 Vrefkko ek Uk = provisional Gantt chart

- Controller System
| |
runningy + waitingy

Can reduce time, and energy usage!



Beyond idle resources - Results
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idle resources - Results

Best—effort resources submitted by CiGri (u)
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Reusability

Comparison with variations in the 1/0 impact of jobs Comparison with variations in the execution time of jobs
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Reusability - Metrics
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How to store the packages?

Usual approach: Merge them all

/usr
_ — bin
- Conflicts | L— myprogram
PATH=/usr/bj —
) T/usr/bin F— libc.so

L— libmylib.so

Nix approach: Keep them separated

/nix/store
F—— y9zgbryffgc5c9y67fcmfdkyyiivjzpj-glibc-2.27

+ Pkg variation L lip

+ lIsolated L— libc.so
nc5qgbagm3wqfg2lvligwj3n3bn88dpgr8-mypkg-0.1.0

+ Well def. PATH L— bin

L— myprogram
+ Read-only L 1ib yprog ’)
L— Tlibmylib.so
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