Control-based runtime management of HPC systems with
support for reproducible experiments

PhD Thesis Defense

Reviewers: Alexandru COSTAN
Alessandro PAPADOPOULOS
Examiners: Fabienne BOYER

Quentin GUILLOTEAU
Ctrl-A and DataMove teams

2023-12-11 Georges DA COSTA
Univ. Grenoble Alpes, INRIA, CNRS, LIG Noél DE PALMA
Quentin.GuilloteauQuniv-grenoble-alpes.fr Supervisors: Eric RUTTEN

Olivier RICHARD

High Performance Computing (HPC)

Computations too demanding ~ need several powerful machines

< expensive ~ shared ~
2/29

Resouces and Job Management System

HPC Jobs & job submission

cit)
= Some computations users RJIMS

= Static resource allocation

= Static time allocation

HPC Cluster

T]
= Computing nodes @ @

= |nterconnected

computing nodes file system
= High speed network, I/O Resources and Jobs Management System [Blel7]

3/29

Resouces and Job Management System

HPC Jobs

= Some computations

100- B B

@
S

= Static resource allocation

= Static time allocation

Resources
3
-
—
I
m
)
I
ol
\
:

HPC Cluster

= Computing nodes N 1 | af'"

|
L

= Interconnected
% 2000 4000 6000 8000
Time

= High speed network, 1/0
Gantt Chart

3/29

Resouces and Job Management System

I
ol P
HPC Jobs (il -
= Some computations 100, i] I
= Static resource allocation s0- | i
. . 3 m
= Static time allocation £ f

[
HPC Cluster — v i nias p#

o "
1| - i [i
= Computing nodes | 1T AET d m
20- | | i
= Interconnected N, \‘ r— .
» High speed network, |/0 O = Time 2088 080

Gantt Chart

Idle Resources = Wasted Computing Power and Money 3/29

Harvesting Idle Resources

: Use smaller, killable jobs (e.g., Big Data [Mer+17], FaaS [Prz+22])

CiGri [GRCO7]

= Grid middleware used at Gricad Bag-of Tasks

= Bag-of-tasks: many, multi-parametric

= Best-effort Jobs: Lowest priority

= Objectives: vocal
= Collect grid idle resources == H H
1 1]

= Reduce pressure on RIMS

= Submits like a periodic tap 00000 O0O00O00 compute

L 000000 0O0O00O Nodes
= submits jobs then, Cluster 1 Cluster 2

= waits for all jobs to terminate

o I

4/29

CiGri jobs [GRR22]

Example: BigGNSS [Dép+18]
Cumulative distribution function of BoT jobs exec times = A lot of satellites = a lot of data

for the Gricad and DAS2 grids
wl = Several stations ~ Campaigns

= Subdivision of the processing ~ Jobs

0.754

= Unique binary + different inputs

Proportion
o
@
o

biggnss
1.0e+07 -
0.25-
o 7.50+061
€
3
0.004 3 5.0e+06
1s 10s 1m 1om 1h 10h 1d 10d 2 564064
Execution times of BoT jobs [
o . 0.0e+00_, T (mm 1
10 years, 44 Millions jobs 1s 10s1m 10m1ih 10h

Execution time [s] (log) 5/29

Problem formulation

» Harvesting ==~ Performance Degradation ~ Trade-off

— Unpredictability = runtime management

6/29

Problem formulation

» Harvesting ==~ Performance Degradation ~ Trade-off

— Unpredictability = runtime management

In this PhD thesis

1. How to CiGri jobs to harvest idle resources with
degradation for priority users?

6/29

Problem formulation

» Harvesting ==~ Performance Degradation ~ Trade-off

— Unpredictability = runtime management

In this PhD thesis

1. How to CiGri jobs to harvest idle resources with
degradation for priority users?

2. How to improve the and of experiments

on grid/cluster systems? 6/29

Harvesting idle resources

Runtime Management: Autonomic Computing (AC)

AC and the MAPE-K LOOp [KC03] Autonomic manager

Analyze Plan

. given
Monitor Knowledge Execute

= implementations: rules, Al, etc. 4

7/29

Runtime Management: Autonomic Computing (AC) and Control Theory

AC and the MAPE-K LOOp [KC03] Autonomic manager

Analyze Plan

. given
Monitor Knowledge Execute

4

= implementations: rules, Al, etc.

Control Theory

= Regulate dynamical systems Disturbances

+
Reference Error Output
— g 1 Controller System
- Input

= physical systems

= mathematically proven properties

= performance, robustness,

Measure

Sensor

7/29

1. Identify the goals

Identify the
goals

Use Control Theory to....

_____ Level 1
...harvest idle resources... 2
Identify the Devise the
.in a way knobs i model
e . Level 2
max cluster utilization =000 T
. . (5 6
min degradation of performance Design the J implement QT?S““"“
troller P| andintegrate | validate the
con the controller system
Level 3

= Focus on /O degradation Steps to design a controller [Fil+15]

8/29

2. Identify the knobs

75 MBytes Files 100 MBytes Files

Actuators (1)
Number of jobs submitted by CiGri

Sensors (y)

Processing Time [s]
N
8

o =
et | TH-
n
8

]
10 + | 100 '
= File-System (NFS): + 0 | ‘
4 . —TT
" measure Of overhead ° 1 10 20 30 40 50 ’ _T_ 10 20 30 40 50
= /proc/loadavg [FZ87] 75 Weyies Fies 00 Byis Fies

=~ number of processes running Y I N I A A B I I %,
= well known by system administrators % H %I i
= Exponential Smoothing ~ Inertia é

— Nice for the control

Fileserver Load
IS >
{-
1
s
N
als
.

2 . 2 .
H
+ - _!_ .
H
0f{=e= o o]==— o
i 10 20 30 40 50 i 10 20 30 40 50

Number of Jobs in the Submission

9/29

2. Identify the knobs

Actuators (1)
Number of jobs submitted by CiGri

Sensors (y)
= File-System (NFS):
] measure of overhead
= /proc/loadavg [FZ87]
=~ number of processes running
= well known by system administrators

= Exponential Smoothing ~ Inertia
< Nice for the control

Processing Time [s]

Fileserver Load

N
3

3

o

>

75 MBytes Files

100 MBytes Files

\0
O

- A\QrTT
1 10 20 30 40 1 10 20 30 40

100 MBytes Files

-

30 40 5

i

10 20 30 40

0
Number of Jobs in the Submission

7
9/29

2. Identify the knobs

Actuators (1)
Number of jobs submitted by CiGri

Sensors (y)
= File-System (NFS):
] measure of overhead
= /proc/loadavg [FZ87]
=~ number of processes running
= well known by system administrators

= Exponential Smoothing ~ Inertia
< Nice for the control

Processing Time [s]

Fileserver Load

N
3

3

o

>

75 MBytes Files

100 MBytes Files

\0
O

- A\QrTT
1 10 20 30 40 1 10 20 30 40

100 MBytes Files

-

30 40 5

i

10 20 30 40

0
Number of Jobs in the Submission

7
9/29

Feedback loop in CiGri

‘‘‘‘‘

} Campaign Local

Users

swmt 11
Cluster
;- - OAR S Schedule
ensors

A o OAR .
|
| —
| / N\
| loadavg 1/0
——————————————————————— File-Sys. < >

Reference value: acceptable 1oad on the File-System, chosen by system admins 10/29

3. Devise the model

First, a Model ... (i.e., how does the system behave without Control)
K k
y(k+1) =Y ajxy(k=i)+ Y bjxu(k-j)
i=0 j=0

... then a (P) Controller (i.e., the Closed-Loop behavior)

(k) = K, x Error(k)

Methodology
Actuator: #jobs to sub ~ 1. Open-Loop experiments (fixed 1)
Sensor: FS Load ~y 2. Model parameters (aj, bj)

Error(k) = Reference — Sensor (k) 3. Choice controller behavior (K,) 11/29

3. Devise the model

First, a Model ... (i.e., how does the system behave without Control)
K k
y(k+1) =Y ajxy(k=i)+ Y bjxu(k-j)
i=0 j=0

... then a (Pl) Controller (i.e., the Closed-Loop behavior)

k

k) =K, x Error(k) + K; x » Error(i
p .
1

Methodology
Actuator: #jobs to sub ~ 1. Open-Loop experiments (fixed 1)
Sensor: FS Load ~y 2. Model parameters (aj, bj)

Error(k) = Reference — Sensor (k) 3. Choice controller behavior (K,) 11/29

3. Devise the model

First, a Model ... (i.e., how does the system behave without Control)
K k
y(k+1) =Y ajxy(k=i)+ Y bjxu(k-j)
i=0 j=0

... then a (PID) Controller (i.e., the Closed-Loop behavior)

k
k) =K, x Error(k) + K; x > Error(i) + Kg x (Error(k) — Error(k — 1
p .

Methodology
Actuator: #jobs to sub ~ 1. Open-Loop experiments (fixed 1)
Sensor: FS Load ~y 2. Model parameters (aj, bj)

Error(k) = Reference — Sensor (k) 3. Choice controller behavior (K,) 11/29

3. Devise the model

First, a Model ... (i.e., how does the system behave without Control)
K k
y(k+1) =Y ajxy(k=i)+ Y bjxu(k-j)
i=0 j=0

... then a (PID) Controller (i.e., the Closed-Loop behavior)

k

k) =K, x Error(k) + K; x » Error(i
p .
1

Methodology
Actuator: #jobs to sub ~ 1. Open-Loop experiments (fixed 1)
Sensor: FS Load ~y 2. Model parameters (aj, bj)

Error(k) = Reference — Sensor (k) 3. Choice controller behavior (K,) 11/29

Devise the model - Open-Loop Experiments

System Identification and (Linear) Model Fitting

50 MBytes Files 75 MBytes Files
~ 8- Models
>
= —— Model Max
8 64
n n o S —— Model Mean
[} -
step” inputs =
2
[
a2
= #1/0 loads (f) 82
i
04
n Observe behavior 0 5000 10000 15000 20000 0 5000 10000 15000 20000
] model s 50 MBytes Files 75 MBytes Files
2 50
o
£
g 30
Ves = a+B1f+Bou+f 2
@ 20
Q
[<}
& 104
o
2
Zz 04 . : : : : . . . T
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Time [s]

12/29

3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~ab="7

13/29

3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~ a,b=7

13/29

3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~ a,b=7

In steady state (ss)

YSs:aXyss+bx

13/29

3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~a,b=7
In steady state (ss)
x(1-a)

Yoo=axy.+bx =~b=y55

13/29

3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~a,b=7
In steady state (ss)

x(l—a):(a+ﬁ1f+ﬁz +yfu.)x(1-a)

Yoo=axy.+bx =~b=y55

13/29

3. Devise the model - First order model

s y(k+1)=axy(k)+bxu(k) ~a,b=7
In steady state (ss)

:b:yssx(l—a):(a+51f+ﬁz +yfu.)x(1-a)

YSs:aXyss+bx

= b=~ (fo+7f)x(1-a)

13/29

3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~a,b=7
In steady state (ss)

x(l—a):(a+ﬁlf+ﬁz +yfu.)x(1-a)

Yoo=axy.+bx =~b=y55

= b=~ (fo+7f)x(1-a)

Where are we?

Open-Loop
Experiments

13/29

3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~a,b=7
In steady state (ss)

x(l—a):(a+ﬁlf+ﬁz +yfu.)x(1-a)

Yo =axy,+bxu. — b=

= b=~ (fo+7f)x(1-a)

Where are we?

Open-Loop Model (1st order)
Experiments y(k+1)=axy(k)+bxu(k)

13/29

3. Devise the model - First order model

cy(k+1)=axy(k)+bxu(k) ~a,b=7
In steady state (ss)

x(1-a) . (a+ pif + Pou. +yfu) x (1-a)

Yo =axy,+bxu. — b=

= b~ (Ba+7f)x(1-a)

Where are we?

Open-Loop Model (1st order) Controller Gains
Experiments y(k+1)=axy(k)+bxu(k) Ky, Ki,

13/29

4. Design the controller

Closed loop behaviour of our system for different values of (ks, Mp)

Controller Gains are ... I ‘ U 075 I [FRICE]
functions of the model and

-
5

EES]

= ks: maximum time to steady state

» Mp: maximum overshoot allowed

o
®» ® 60 N & o ®

Output Values
RS
w
i
|
i}
L H

[

ST

5 10 15 20 5 10 5 20
Iterations

4. Design the controller

Closed loop behaviour of our system for different values of (ks, Mp)

Controller Gains are ... I ‘ U 07 I [FFIC
functions of the model and

-
5

EES]

= ks: maximum time to steady state

» Mp: maximum overshoot allowed

o
®» ® 6o N & o ®

Output Values
RS
w
i
|
i}
L H

[

ST

5 10 15 20 5 10 5 20
Iterations

4. Design the controller

Closed loop behaviour of our system for different values of (ks, Mp)

Controller Gains are ... I ‘ U 075 I [FFIC
functions of the model and

-
5

EES]

= ks: maximum time to steady state

» Mp: maximum overshoot allowed

o
®» ® 60 N & o ®

Output Values
o~ &
w
i
|
i}
L H

[

Non-Intrusive Harvesting .

= no overshoot 4fﬂf/fo" L
= but "fast" response 0

5 10 15 20 5 10 5 20
Iterations

ST

5./6. Implement and validate the controller - Evaluation with synthetic jobs

Response of the Controlled System to a Step Perturbation

200 MBytes Files = constant reference

3 84 ic i
s 7 = synthetic jobs
@ 6 - .
3 5] = step disturbance
& 4
S
§ 31
g -
T 1

o]

200 MBytes Files

)
% 151
e}
S
%5 10
5
£ 57
=}
=4

o

0 2000 4000 6000 15,29
Time [s]

5./6. Implement and validate the controller - Evaluation with synthetic jobs

Response of the Controlled System to a Step Perturbation

200 MBytes Files = constant reference

2 ; = synthetic jobs
2] i W — . . _
S = step disturbance
g
§ 31
824 4 0 mmmmmemi——e—Ems 1
T 1 i

o e R

4000 6000
4

200 MBytes Files

takes time to react

-
[

— might cause
overload

o

Number of jobs (u)
5

=}

0 2000 4000 6000 15,29
Time [s]

Trade-off: Idleness versus Performance degradation (I/O Overhead)

Idle resources (%)

100

75

50

25

Cluster Usage by Writing Time of MADBench2

[
‘o ¢
[Y ®
..
[J
o O
. . Refi Val .

Objective R SR
0 200 40 600

Writing time Overhead (

0
s)

MADBench2 [Bor+07]
various reference values
compute idle resources
compute |/O overhead

16/29

A note on controllers’ reusability

= Controllers to the identified system
= what if new cluster? new configuration?

= Grid/Cluster administrators
< not control theory experts!

= compared 3 controllers (w.r.t. portability,
guarantees, competence required)

= example: Portability vs. Performance

. for system
administrators

17/29

A note on controllers’ reusability

= Controllers to the identified system

= what if new cluster? new configuration?

= Grid/Cluster administrators
< not control theory experts!

= compared 3 controllers (w.r.t. portability,
guarantees, competence required)

= example: Portability vs. Performance

. for system
administrators

17/29

Control-based harvesting of idle resources: Wrapping up

Objectives
= Control CiGri submissions based on File-System load
.
= Can merge controllers!

= Guidelines for system administrators

Tutorial to introduce control theory to computer scientists

Limitations and Perspectives
= Tested with synthetic jobs ~ real trace
= Need more info about CiGri jobs' /O patterns
= Submissions to several clusters

= Sensor for Parallel File-System (PFS) ? 18/29

Control-based harvesting of idle resources: Wrapping up

Objectives

= Control CiGri submissions based on File-System load
n
= Can merge controllers!

= O [0, _

. Control Th-erAFy- to exploit such trade-offs

- TLuLvVIIdl LU 111l vUuULCCT Luliui vl LIICUIy LU LUIlIIpuLCtE DuicClhitiows

B SRR

Limitations and Perspectives
= Tested with synthetic jobs ~ real trace
= Need more info about CiGri jobs' /O patterns
= Submissions to several clusters

= Sensor for Parallel File-System (PFS) ? 18/29

Experiment costs and reproducibility

A grid middleware needs ... a grid!

required 1
to perform experiments
on a grid middleware like CiGri?

High

Cost (Energy/Development/Deployment)
Low

\
Modeled system Real system ’

Realism 19/29

A grid middleware needs ... a grid!

required 1

to perform experiments 2
on a grid middleware like CiGri? £

2 B

o T
= Simulation: fast ®, modeled ®, poor %
c
sensor support @, poor PFS support ® g
(=%
3
3
Q
F

o g Simulation

LE —
2
o

\
Modeled system Real system ’

Realism 19/29

A grid middleware needs ... a grid!

required 1
to perform experiments 2
on a grid middleware like CiGri? £ Full scale
2 &
o I
= Simulation: fast ©, modeled ®, poor %
=
sensor support @, poor PFS support ® g
(=%
= Full scale: real environment ©, 73
[}
expensive and difficult ® g
%ﬂ _‘g Simutation
w
2
o
Modeled system Real system ’
Realism 19/29

A grid middleware needs ... a grid!

required 1
to perform experiments 2
on a grid middleware like CiGri? £ Full scale
)
o I
= Simulation: fast ©, modeled ®, poor % Reduced
=
sensor support @, poor PFS support ® g scale
(=%
= Full scale: real environment ©, 73
[}
expensive and difficult ® g
[
= Reduced scale: real environment ©, E _.‘% Simutation
cheaper ©, ® P
S
Modeled system Real system ’

Realism 19/29

A grid middleware needs ... a grid!

required 1
to perform experiments 2
on a grid middleware like CiGri? £ Full scale
2 5
[T
= Simulation: fast ©, modeled ®, poor % Reduced
=
sensor support @, poor PFS support ® g scale
(=%
= Full scale: real environment ©, 73
[
expensive and difficult ® g
<]
= Reduced scale: real environment ©, E _.‘% Simutation
cheaper ©, ® e
[=]
: Low cost, realist experiments “ N
Modeled system Real system ’

on the real system
Realism 19/29

Emulating a full scale cluster by folding its deployment [Gui+23]

: Deploy more "virtual" resources on one physical machine

File System

Comms'Physical Res.

Virtual Res.

20/29

Emulating a full scale cluster by folding its deployment [Gui+23]

: Deploy more "virtual" resources on one physical machine

File System

1/0 ops,

Comms. X
Physical Res.
Virtual Res.

20/29

Emulating a full scale cluster by folding its deployment [Gui+23]

: Deploy more "virtual" resources on one physical machine

File System

'Physical Res.
Virtual Res.

20/29

Emulating a full scale cluster by folding its deployment [Gui+23]

: Deploy more "virtual" resources on one physical machine

File System + less resources deployed + real system/environment

+ represents full scale system

'Physical Res.
Virtual Res.

20/29

Emulating a full scale cluster by folding its deployment [Gui+23]

: Deploy more "virtual" resources on one physical machine

File System + less resources deployed + real system/environment

+ represents full scale system - new job model: sleep +

'Physical Res.
Virtual Res.

20/29

Emulating a full scale cluster by folding its deployment [Gui+23]

: Deploy more "virtual" resources on one physical machine

File System + less resources deployed + real system/environment

+ represents full scale system - new job model: sleep +

Model of the breaking point in behavior based on folding ratio for OrangeFS

Reading Writing

'Physical Res.
Virtual Res.

Y
£ 10
[
Protocole:
o] St || m————t———————
= IOR [Cal23] 5 D 2 06 1 % %

. . Number of MPI processes per machine
= increase folding

= NFS, OrangeFS

Size of the file to read/write e 10M 4 100M = 500M + 1G : Model 20/29

Emulating a full scale cluster by folding its deployment [Gui+23]

: Deploy more "virtual" resources on one physical machine

File System + less resources deployed + real system/environment
i‘ f '§ i + represents full scale system - new job model: sleep +
1/0 ops.

— Folding is appropriate until a

Comm;. J
Physical Res.) Aty

Virtual Res.

Protocole:
0 A ——.
= |OR [Ca|23] 0 10 20 R 10
. . Number of MPI processes per machine
= increase folding

Size of the file to read/write e 10M 4 100M = 500M + 1G ! Model
= NFS, OrangeFS '

T T
20 30

20/29

Complex Software Environments

Graph of CiGri's software dependencies

21/29

Complex Software Environments
_— 7 = = ‘ = Z N

—
|
I

\

—

BN T B ':"“ 77 Ne\\wwi “:

“me e e ﬁﬁm@g%%%;l&_\)y |

, , R IX W e | ||

| SO S SR > a5
r‘—L ‘w‘ -

Graph of CiGri's software dependencies

— and RJMS, PFS, jobs, etc. ~» very complex to manage/modify

21/29

Complex Software Environments

3N ,,:;,,,,,, -/4 ‘

Graph of CiGri's software dependencies

— and RJMS, PFS, jobs, etc. ~» very complex to manage/modify

How to complex software

environments in a fashion?
21/29

Generating Distributed Software Environments

< Difficult, Time-consuming, Script-based tools, and process

THE #| EXPERIMENTERS EXCUSE
FOR LEGITIMATELY SLACKING OFF:

"MY IMAGE 15 BUILDING,"

HEY! GET BACK,
TO WORK!

~10/15 mins
— Easy to

THE #| EXPERIMENTERS EXCUSE
FOR LEGITIMATELY SLACKING OFF:

"MY EXPE IS5 DEPLOYING,"

HEY! GET BACK

~5/10 mins

: base image, apt mirror, git repository 22/29

Generating Distributed Software Environments

< Difficult, Time-consuming, Script-based tools, and process
THE #| EXPERIMENTERS EXCUSE THE #| EXPERIMENTERS EXCUSE
FOR LEGITIMATELY SLACKING OFF: FOR LEGITIMATELY SLACKING OFF:
MY IMAGE 15 BUILDING," ‘MY EXPE IS5 DEPLOYING,"

practices

~10/15 mins ~5/10 mins

— Easy to : base image, apt mirror, git repository 22/29

One tool, One platform

Environment description (3 times)

5 — — =

© docker-compose |Vagrant (Kameleon
+ W

C ¥ L4 X

th docker VM image

O ilocal Deployed (g5k)

‘So essentially, | want to create a debian12-nfs.qcow?2 for \V\Ms equivalent
to grid5000’s debian12-nfs image. One to achieve this would be
to install every single thing using the package manager and resolving conflicts
by hand. (Grid’5000 User, 2023)

23/29

One tool, One platform

Environment description (3 times)

9 —=1(1) —=1(2) —=1(3)
m - - —
© docker-compose |Vagrant (Kameleon
4 \y
C ¥ |4 : i -)
g i|docker VM |{ i|image
— Be able to distributed environments and then export

‘So essentially, | want to create a debian12-nfs.qcow? for \/Ms equivalent
to grid5000’s debian12-nfs image. One to achieve this would be
to install every single thing using the package manager and resolving conflicts
by hand.’ (Grid’5000 User, 2023)

23/29

Functional package managers

Base Packages (b6a36171)
= Nix 3% Guix X

= packages = functions A

= inputs = dependencies

= body = commands to build the package
= base packages defined in Git
= sandbox, no side effect

= /nix/store/hash(inputs)-my-pkg

= immutable, read-only
] definition of $PATH G

= can build: container, VM, system images Resulting Package ﬁ

/~_Package
D gfs .

24/29

Functional package managers

Base Packages (10028b48)
= Nix 3% Guix X
= packages = functions
= inputs = dependencies
= body = commands to build the package

= base packages defined in Git .. Package

= sandbox, no side effect Q?fs'

= /nix/store/hash(inputs)-my-pkg

= immutable, read-only
] definition of $PATH G

= can build: container, VM, system images Resulting Package O

24/29

NixOS Compose [Gui+22]

1 { pkgs, ... }:
2 let k3sToken = "..."; in {
3 roles = {
4 server = { pkgs, ... }: {
5 environment.systemPackages = with pkgs; [.
. k3s gzip = Python + Nix (~ 4000 l.o.c.)
7 1;
: petworking fireuail. allovediCrrorts = [= developing/deploying distributed systems
10 1;
i corvices k3s = { " (in Nix), multiple targets
12 enable = true;
" plkg S e ke = docker , VM, ramdisk, system image
15 extraFlags = "--agent-token ${k3sTokenl}";))
. = can setup distributed envs
17 H
18 agent = { pkgs, ... }: { H .
19 environment.systemPackages = with pkgs; [= bUIIdV deploy’ ConneCt
20 k3s gzip
2 1; . = contextualization (ssh keys, /etc/hosts, etc.)
22 services .k3s =
bl =t H . . .
: S = integration with Execo [Imb+13]
25 serverAddr = "https://server :6443";
26 token = k3sToken; | |
. . a few, but happy, users ®
28 X
B 25/29

Comparisons - Setting up a distributed environments on Grid’5000

Kameleon [Rui+15]

Construction Time with NFS [s]

nxc-g5k-ramdisk .
nxc-g5k-image 4 .

0 250 500 750 1000

=

base . base + hello

build ~ modify (add hello) ~ build

EnOSlib [Che+22]

flent
300 4
=
2,200 1
o —
=
F 100+ ———
ol _ m__H
BL:Hd Sub+bep|oy Provis.ioning Rl‘,ln
Phases
. EnOSlib nxc-g5k-ramdisk nxc-g5k-image

NixOS Compose ~» provisioning done in image

26/29

Comparisons - Setting up a distributed environments on Grid’5000

Kameleon [Rui+15]

Construction Time with NFS [s]

nxc-g5k-ramdisk .
nxc-g5k-image 4 .
0 250 500 750 1000

base . base + hello

build ~ modify (add hello) ~ build

EnOSlib [Che+22]

flent
300 4
=
£, 2001
O) —
=
F 100+ ———
o) m__B
Blj”d Sub + beplo Provis.ioning Rtlm
Phases
. EnOSlib nxc-g5k-ramdisk nxc-g5k-image

NixOS Compose ~» provisioning done in image

26/29

< Fast builds, faster rebuilds ~ reduces development cycles

— Fast deploys, reduce provisioning phases

Experiment costs and reproducibility: Wrapping up

Objectives

Reduce cost of experimenting with
grid/cluster middlewares

Improve development cycles for
reproducible experiments

Limitations and Perspectives

More popular Parallel File-Systems
Source of the performance loss unclear
Other platforms for NixOS Compose
Hybrid /folded deployments

Simulation: PFS and sensors

Cost (Energy/Development/Deployment)

High

Low

Full scale

Reduced
scale

G 4
Sthdration

Modeled system

Real system

Realism

+

27/29

Experiment costs and reproducibility: Wrapping up

Objectives

Reduce cost of experimenting with
grid/cluster middlewares

Improve development cycles for
reproducible experiments

Limitations and Perspectives

More popular Parallel File-Systems
Source of the performance loss unclear
Other platforms for NixOS Compose
Hybrid /folded deployments

Simulation: PFS and sensors

Cost (Energy/Development/Deployment)

High

Low

Full scale

Reduced

Folding
scale

G 4
Sthdration

Modeled system

Real system

Realism

+

27/29

Experiment costs and reproducibility: Wrapping up

Objectives

Reduce cost of experimenting with
grid/cluster middlewares

Improve development cycles for
reproducible experiments

Limitations and Perspectives

More popular Parallel File-Systems
Source of the performance loss unclear
Other platforms for NixOS Compose
Hybrid /folded deployments

Simulation: PFS and sensors

Cost (Energy/Development/Deployment)

High

Low

Full scale

Reduced

Folding
scale

G 4
Sthdration

Modeled system

Real system

Realism

+

NixOS
Compose

27/29

Take Away: Reduced the time/energy cost to experi-

ment with distributed systems, and improve reproducibility

Concluding thoughts

Conclusion

How to harvest HPC idle resources while controlling the impact on the priority jobs?

Contributions

= Design/implement an Autonomic loop in CiGri...

= to control the load of the File-System ~ control overhead, avoid overload
= to reduce the wasted computing power (idle and killed)

= ... using Control Theory

= yields guarantees and explainability
= guidelines for system administrators, tutorial

= Reduce experiment costs

= reduce number of machines to deploy without loss of realism
= tool for developing and deploying reproducible distributed environments 28/29

CiGri
Improve usage of computing clusters

Folding
Reduce number of physical machines required to represent a full scale cluster

NixOS Compose
Reduce development time, and reduce "test" deployments

29/29

CiGri
Improve usage of computing clusters

Folding
Reduce number of physical machines required to represent a full scale cluster

NixOS Compose
Reduce development time, and reduce "test" deployments

But can it introduce a ?

29/29

How to choose the reference value?

» Normalized loadavg then fix to 75%, 90%, 95%, etc.

How to choose the reference value?

» Normalized loadavg then fix to 75%, 90%, 95%, etc.
= How much to sustain?

How to choose the reference value?

» Normalized loadavg then fix to 75%, 90%, 95%, etc.

Load

o - N o &

o =+ N o &

= How much

to sustain?

= dynamic reference value
= based on number of priority jobs and historical 1/0 data (e.g., Darshan [Car+11])

Load of a Write request by file size and sub. size

el | s

Priority jobs
F (Disturbance)
Yprio,k dy
fimodel
Uk
Controller System
Yk

Beyond idle resources

Wasted computing power: ldle resources, but also

Beyond idle resources

Wasted computing power: ldle resources, but also !

Priority jobs
(Disturbance)

|

Fmax €k U
Controller System
runningy + waitingy

Beyond idle resources

Wasted computing power: ldle resources, but also !

o " variations in
Priority jobs

(Disturbance) available resources

|

Fmax €k U
Controller System
runningy + waitingy

Beyond idle resources

Wasted computing power: ldle resources, but also !

o = variations in
Priority jobs
(Disturbance) available resources
J = new sensor

Fmax 425 Vrefkko ek Uk = provisional Gantt chart
- Controller System
runningy + waitingy

Beyond idle resources

Wasted computing power: ldle resources, but also !

o = variations in
Priority jobs
(Disturbance) available resources
J = new sensor

Fmax 425 Vrefkko ek Uk = provisional Gantt chart
- Controller System
runningy + waitingy

Beyond idle resources

Wasted computing power: ldle resources, but also !

o = variations in

Priority jobs
(Disturbance) available resources
J = New sensor

Fmax 425 Vrefkko ek Uk = provisional Gantt chart

- Controller System
| |
runningy + waitingy

Can reduce time, and energy usage!

Beyond idle resources - Results

Computing Time point—of-view

1.5
3 3 3 \dr\s Resuurct&s 3 3 3 3 3 3 VKl\Iedr Jabs l 1 - — - _

] N *** 0

15_*$*¢*_ﬁ_ AL

07 ; 0.5-

5+ Y %0 - t E

L T EE Y
o- 0.0
= q c
§ 1 g # = % 8 Energy point—of-view
E oW e B
g deah 3
g 8
8 2- $ ™ .
L IR | b o -1 P2 3K -
124 %
° L 3

Piddebewt

8+ = .

) Il T,) S

None St im 1730 Zim 2150 Sn 330 4 Noms B L A7a0 2 230 m Ama0 4 None 30s 1m 1m30 2m 2m30 3m 3m30 4m

Horizon Horizon

idle resources - Results

Best—effort resources submitted by CiGri (u)

40

304

204

104

Resources

Waiting + Running Best-effort resources (y)

604

0 1000 2000 3000 4000
Time [s]

W cei [voma

404

204

0 1000 2000 3000 4000
Time [s]

Reusability

Comparison with variations in the 1/0 impact of jobs Comparison with variations in the execution time of jobs
PI aPl MFC PI aPl MFC
8
o 7
< 6 5
5 5 8
H 4 ¢
18 3 s
I 2 7
8 1
0
8
é 7
6 8
=
5 3
g i g
-8 33 g
%) g 2 @
o 3 o1l
3 S0
: s e
& 3 &6 3
o = 25 @
find 2 [8
48 [
13 1
0
N 8
3 : 5
= 5 S
3 o
H H g
-0 3 ‘5-
I 2 g
3 |
=] dobi [atey |3 ! | |4S ! W Y w._2
0 20.00 A0.00 60.00 (.] 20.00 40‘00 60.00 (.) 20.00 A0.00 EO‘OO X A0.00 60.00 (.] 20.00 40‘00 60.00

Time [s] Time [s]

Reusability - Metrics

Overshoot
67 =
44 .
A
24 - A
o AR ®
Ot =—=====-== [] —A—l- ———————————————
Precision
2.04 . u
1.54
1.0 A
AN -
1 A A
0.5 ~ - .
O T Y
Rapidity
é4 L}
15004 M
L]
1000 & A ¢ =
A
500
o L}
Ot===-p=-==-=-- B D S
50 100 200 400

File size [MBytes]

Overshoot
37 A
AE
5 =
A
1.
A o
L1
0-———.—— ———=- - — = - == == === — - =
Precision
1.5
A
1.0 L]
A
A
0.51 A
® . L] gl
[S N Y Yy
Rapidity
Am
1500 A A
A
1000 A A
5001 > ¥
L] 3 L
Ob===p=-=-=-=--- = —
10 30 60 120

Execution times [s]

How to store the packages?

Usual approach: Merge them all

/usr
_ — bin
- Conflicts | L— myprogram
PATH=/usr/bj —
) T/usr/bin F— libc.so

L— libmylib.so

Nix approach: Keep them separated

/nix/store
F—— y9zgbryffgc5c9y67fcmfdkyyiivjzpj-glibc-2.27

+ Pkg variation L lip

+ lIsolated L— libc.so
nc5qgbagm3wqfg2lvligwj3n3bn88dpgr8-mypkg-0.1.0

+ Well def. PATH L— bin

L— myprogram
+ Read-only L 1ib yprog ’)
L— Tlibmylib.so

References i

1 R. Bleuse, “Apprehending heterogeneity at (very) large scale,” Theses (Université
Grenoble Alpes, Oct. 2017).

2 J. Borrill et al., “Investigation of leading hpc i/o performance using a
scientific-application derived benchmark,” in Proceedings of the 2007 acm/ieee
conference on supercomputing (2007), pp. 1-12.

3 U. of California, lor benchmark, 2023.

4 P. Carns et al., “Understanding and improving computational science storage access
through continuous characterization,” ACM Transactions on Storage (TOS) 7, 1-26
(2011).

References ii

> R.-A. Cherrueau et al., “EnosLib: A Library for Experiment-Driven Research in
Distributed Computing,” en, |IEEE Transactions on Parallel and Distributed Systems
33, 1464-1477 (2022).

6 A. Déprez et al., “Toward the generation of epos-gnss products,” in 19th general
assembly of wegener: on earth deformation & the study of earthquakes using geodesy

and geodynamics (2018).

" D. Ferrari et al., An empirical investigation of load indices for load balancing
applications, (Computer Science Division, University of California, 1987).

8 A. Filieri et al., “Software engineering meets control theory,” in 2015 ieee/acm 10th
international symposium on software engineering for adaptive and self-managing
systems (IEEE, 2015), pp. 71-82.

https://doi.org/10.1109/TPDS.2021.3111159
https://doi.org/10.1109/TPDS.2021.3111159

References ii

9 Y. Georgiou et al., “Evaluations of the lightweight grid cigri upon the grid5000
platform,” in Third ieee international conference on e-science and grid computing
(e-science 2007) (IEEE, 2007), pp. 279-286.

10Q. Guilloteau et al., “Etude des applications bag-of-tasks du méso-centre gricad,” in
COMPAS 2022 - Conférence francophone d'informatique en Parallélisme,
Architecture et Systéme (July 2022), pp. 1-7.

11Q. Guilloteau et al., “Folding a Cluster containing a Distributed File-System,”
working paper or preprint, 2023.

https://hal.archives-ouvertes.fr/hal-03702246
https://hal.archives-ouvertes.fr/hal-03702246

References iv

12Q). Guilloteau et al., “Painless Transposition of Reproducible Distributed
Environments with NixOS Compose,” in CLUSTER 2022 - |EEE International
Conference on Cluster Computing, Vol. CLUSTER 2022 - IEEE International
Conference on Cluster Computing (Sept. 2022), pp. 1-12.

13M. Imbert et al., “Using the EXECO toolbox to perform automatic and reproducible
cloud experiments,” in 1st International Workshop on UsiNg and building CIOud
Testbeds (UNICO, collocated with IEEE CloudCom 2013 (Dec. 2013).

14). 0. Kephart et al., “The vision of autonomic computing,” Computer 36, 41-50
(2003).

https://hal.science/hal-03723771
https://hal.science/hal-03723771
https://doi.org/10.1109/CloudCom.2013.119
https://doi.org/10.1109/CloudCom.2013.119

References v

15M. Mercier et al., “Big data and hpc collocation: using hpc idle resources for big

data analytics,” in 2017 ieee international conference on big data (big data) (IEEE,
2017), pp. 347-352.

16B. Przybylski et al., “Using unused: non-invasive dynamic faas infrastructure with
hpc-whisk,” in Sc22: international conference for high performance computing,
networking, storage and analysis (IEEE, 2022), pp. 1-15.

17C. Ruiz et al., “Reconstructable Software Appliances with Kameleon,” en, ACM
SIGOPS Operating Systems Review 49, 80-89 (2015).

https://doi.org/10.1145/2723872.2723883
https://doi.org/10.1145/2723872.2723883

	Harvesting idle resources
	Experiment costs and reproducibility
	Concluding thoughts
	Appendix

