
Reviewers: Alexandru COSTAN
Alessandro PAPADOPOULOS

Examiners: Fabienne BOYER
Georges DA COSTA
Noël DE PALMA

Supervisors: Eric RUTTEN
Olivier RICHARD

Control-based runtime management of HPC systems with
support for reproducible experiments
PhD Thesis Defense

Quentin GUILLOTEAU
Ctrl-A and DataMove teams
2023-12-11

Univ. Grenoble Alpes, INRIA, CNRS, LIG
Quentin.Guilloteau@univ-grenoble-alpes.fr

High Performance Computing (HPC)

/

,
Computations too demanding ↝ need several powerful machines

↪ expensive ↝ shared ↝ reservation process
2/29

Resouces and Job Management System

HPC Jobs
• Some computations
• Static resource allocation
• Static time allocation

HPC Cluster
• Computing nodes
• Interconnected
• High speed network, I/O Resources and Jobs Management System [Ble17]

↪ How to harvest?

Idle Resources = Wasted Computing Power and Money

3/29

Resouces and Job Management System

HPC Jobs
• Some computations
• Static resource allocation
• Static time allocation

HPC Cluster
• Computing nodes
• Interconnected
• High speed network, I/O

Gantt Chart

↪ How to harvest?

Idle Resources = Wasted Computing Power and Money 3/29

Resouces and Job Management System

HPC Jobs
• Some computations
• Static resource allocation
• Static time allocation

HPC Cluster
• Computing nodes
• Interconnected
• High speed network, I/O

Gantt Chart

↪ How to harvest?

Idle Resources = Wasted Computing Power and Money 3/29

Harvesting Idle Resources

Main idea: Use smaller, killable jobs (e.g., Big Data [Mer+17], FaaS [Prz+22])

CiGri [GRC07]
• Grid middleware used at Gricad
• Bag-of-tasks: many, multi-parametric
• Best-effort Jobs: Lowest priority
• Objectives:

• Collect grid idle resources
• Reduce pressure on RJMS

• Submits like a periodic tap
• submits jobs then,
• waits for all jobs to terminate
↪ suboptimal!

OAR

Cigri

OAR

Cluster 1 Cluster 2

Compute
Nodes

Bag-of-Tasks

Local
Users

4/29

CiGri jobs [GRR22]

Gricad

DAS2

0.00

0.25

0.50

0.75

1.00

1s 10s 1m 10m 1h 10h 1d 10d
Execution times of BoT jobs

P
ro

po
rt

io
n

for the Gricad and DAS2 grids

Cumulative distribution function of BoT jobs exec times

10 years, 44 Millions jobs

Example: BigGNSS [Dép+18]
• A lot of satellites Ô⇒ a lot of data
• Several stations ↝ Campaigns
• Subdivision of the processing ↝ Jobs
• Unique binary + different inputs

5/29

Problem formulation

Problem

↗ Harvesting Ô⇒ ↗ Performance Degradation ↝ Trade-off

↪ Unpredictability Ô⇒ runtime management

In this PhD thesis

1. How to submit CiGri jobs to harvest idle resources with
controlled degradation for priority users?

2. How to improve the cost and reproducibility of experiments
on grid/cluster systems?

6/29

Problem formulation

Problem

↗ Harvesting Ô⇒ ↗ Performance Degradation ↝ Trade-off

↪ Unpredictability Ô⇒ runtime management

In this PhD thesis

1. How to submit CiGri jobs to harvest idle resources with
controlled degradation for priority users?

2. How to improve the cost and reproducibility of experiments
on grid/cluster systems?

6/29

Problem formulation

Problem

↗ Harvesting Ô⇒ ↗ Performance Degradation ↝ Trade-off

↪ Unpredictability Ô⇒ runtime management

In this PhD thesis

1. How to submit CiGri jobs to harvest idle resources with
controlled degradation for priority users?

2. How to improve the cost and reproducibility of experiments
on grid/cluster systems? 6/29

Harvesting idle resources

Runtime Management: Autonomic Computing (AC)

and Control Theory

AC and the MAPE-K Loop [KC03]
• Auto-regulation given high-level

objectives
• implementations: rules, AI, etc.

Control Theory
• Regulate dynamical systems
• physical systems
• mathematically proven properties
• performance, robustness,

explainability

Reference Error
Controller

Input
System

Disturbances

Output

Sensor
Measure

-

+

7/29

Runtime Management: Autonomic Computing (AC) and Control Theory

AC and the MAPE-K Loop [KC03]
• Auto-regulation given high-level

objectives
• implementations: rules, AI, etc.

Control Theory
• Regulate dynamical systems
• physical systems
• mathematically proven properties
• performance, robustness,

explainability

Reference Error
Controller

Input
System

Disturbances

Output

Sensor
Measure

-

+

7/29

1. Identify the goals

Problem formulation
• Use Control Theory to....
• ...harvest idle resources...
• ...in a non-intrusive way
• max cluster utilization
• min degradation of performance

↪ Focus on I/O degradation Steps to design a controller [Fil+15]

8/29

2. Identify the knobs

Actuators (u)
Number of jobs submitted by CiGri

Sensors (y)

• File-System (NFS):
• indirect measure of overhead
• /proc/loadavg [FZ87]

• ≃ number of processes running
• well known by system administrators
• Exponential Smoothing ↝ Inertia
↪ Nice for the control

• know limits of sensor

• Cluster: OAR API (nb running, waiting jobs)

Ove
rlo

ad
!

9/29

2. Identify the knobs

Actuators (u)
Number of jobs submitted by CiGri

Sensors (y)

• File-System (NFS):
• indirect measure of overhead
• /proc/loadavg [FZ87]

• ≃ number of processes running
• well known by system administrators
• Exponential Smoothing ↝ Inertia
↪ Nice for the control

• know limits of sensor

• Cluster: OAR API (nb running, waiting jobs)

Ove
rlo

ad
!

9/29

2. Identify the knobs

Actuators (u)
Number of jobs submitted by CiGri

Sensors (y)

• File-System (NFS):
• indirect measure of overhead
• /proc/loadavg [FZ87]

• ≃ number of processes running
• well known by system administrators
• Exponential Smoothing ↝ Inertia
↪ Nice for the control

• know limits of sensor

• Cluster: OAR API (nb running, waiting jobs)

Ove
rlo

ad
!

9/29

Feedback loop in CiGri

CiGri

OAR

I/O

File-Sys.

Submit

Schedule

Cluster

Local
Users

Campaign

Task

Controller

loadavg

OAR Sensors

Tap

Reference value: acceptable load on the File-System, chosen by system admins 10/29

3. Devise the model

First, a Model ... (i.e., how does the system behave without Control)

y(k + 1) =
k
∑
i=0

ai × y(k − i) +
k
∑
j=0

bj × u(k − j)

... then a (P

ID

) Controller (i.e., the Closed-Loop behavior)

u(k) = Kp × Error(k)

+Ki ×
k
∑
i

Error(i) + Kd × (Error(k) − Error(k − 1))

Sensors & Actuators
• Actuator: #jobs to sub ↝ u
• Sensor: FS Load ↝ y
• Error(k) = Reference − Sensor(k)

Methodology

1. Open-Loop experiments (fixed u)
2. Model parameters (ai , bj)
3. Choice controller behavior (K∗) 11/29

3. Devise the model

First, a Model ... (i.e., how does the system behave without Control)

y(k + 1) =
k
∑
i=0

ai × y(k − i) +
k
∑
j=0

bj × u(k − j)

... then a (PI

D

) Controller (i.e., the Closed-Loop behavior)

u(k) = Kp × Error(k) +Ki ×
k
∑
i

Error(i)

+ Kd × (Error(k) − Error(k − 1))

Sensors & Actuators
• Actuator: #jobs to sub ↝ u
• Sensor: FS Load ↝ y
• Error(k) = Reference − Sensor(k)

Methodology

1. Open-Loop experiments (fixed u)
2. Model parameters (ai , bj)
3. Choice controller behavior (K∗) 11/29

3. Devise the model

First, a Model ... (i.e., how does the system behave without Control)

y(k + 1) =
k
∑
i=0

ai × y(k − i) +
k
∑
j=0

bj × u(k − j)

... then a (PID) Controller (i.e., the Closed-Loop behavior)

u(k) = Kp × Error(k) +Ki ×
k
∑
i

Error(i) + Kd × (Error(k) − Error(k − 1))

Sensors & Actuators
• Actuator: #jobs to sub ↝ u
• Sensor: FS Load ↝ y
• Error(k) = Reference − Sensor(k)

Methodology

1. Open-Loop experiments (fixed u)
2. Model parameters (ai , bj)
3. Choice controller behavior (K∗) 11/29

3. Devise the model

First, a Model ... (i.e., how does the system behave without Control)

y(k + 1) =
k
∑
i=0

ai × y(k − i) +
k
∑
j=0

bj × u(k − j)

... then a (PID) Controller (i.e., the Closed-Loop behavior)

u(k) = Kp × Error(k) +Ki ×
k
∑
i

Error(i) + Kd × (Error(k) − Error(k − 1))

Sensors & Actuators
• Actuator: #jobs to sub ↝ u
• Sensor: FS Load ↝ y
• Error(k) = Reference − Sensor(k)

Methodology

1. Open-Loop experiments (fixed u)
2. Model parameters (ai , bj)
3. Choice controller behavior (K∗) 11/29

3. Devise the model - Open-Loop Experiments

• "step" inputs
• ≠ I/O loads (f)
• observe behavior
• linear model

yss = α+β1f +β2u+γf u

Models

Model Max

Model Mean

50 MBytes Files 75 MBytes Files

0 5000 10000 15000 20000 0 5000 10000 15000 20000

0

2

4

6

8

F
ile

se
rv

er
 L

oa
d

(y
)

50 MBytes Files 75 MBytes Files

0 5000 10000 15000 20000 0 5000 10000 15000 20000
0

10

20

30

40

50

Time [s]

N
b

of
 J

ob
s

su
bm

itt
ed

 (
u)

System Identification and (Linear) Model Fitting

12/29

3. Devise the model - First order model

First order model: y(k + 1) = a × y(k)+ b ×u(k) ↝ a, b = ?

(a from def of loadavg)

In steady state (ss)

yss = a × yss + b × uss

Ô⇒ b = yss × (1 − a)
uss

Ô⇒ (α + β1f + β2uss + γf uss) × (1 − a)
uss

Ô⇒ b ≃ (β2 + γf) × (1 − a)

Where are we?

Open-Loop
Experiments

✓↝ Model (1st order)
y(k + 1) = a × y(k) + b × u(k)

✓↝ Controller Gains
Kp, Ki , Kd

13/29

3. Devise the model - First order model

First order model: y(k + 1) = a × y(k)+ b ×u(k) ↝ a, b = ? (a from def of loadavg)

In steady state (ss)

yss = a × yss + b × uss

Ô⇒ b = yss × (1 − a)
uss

Ô⇒ (α + β1f + β2uss + γf uss) × (1 − a)
uss

Ô⇒ b ≃ (β2 + γf) × (1 − a)

Where are we?

Open-Loop
Experiments

✓↝ Model (1st order)
y(k + 1) = a × y(k) + b × u(k)

✓↝ Controller Gains
Kp, Ki , Kd

13/29

3. Devise the model - First order model

First order model: y(k + 1) = a × y(k)+ b ×u(k) ↝ a, b = ? (a from def of loadavg)

In steady state (ss)

yss = a × yss + b × uss

Ô⇒ b = yss × (1 − a)
uss

Ô⇒ (α + β1f + β2uss + γf uss) × (1 − a)
uss

Ô⇒ b ≃ (β2 + γf) × (1 − a)

Where are we?

Open-Loop
Experiments

✓↝ Model (1st order)
y(k + 1) = a × y(k) + b × u(k)

✓↝ Controller Gains
Kp, Ki , Kd

13/29

3. Devise the model - First order model

First order model: y(k + 1) = a × y(k)+ b ×u(k) ↝ a, b = ? (a from def of loadavg)

In steady state (ss)

yss = a × yss + b × uss Ô⇒ b = yss × (1 − a)
uss

Ô⇒ (α + β1f + β2uss + γf uss) × (1 − a)
uss

Ô⇒ b ≃ (β2 + γf) × (1 − a)

Where are we?

Open-Loop
Experiments

✓↝ Model (1st order)
y(k + 1) = a × y(k) + b × u(k)

✓↝ Controller Gains
Kp, Ki , Kd

13/29

3. Devise the model - First order model

First order model: y(k + 1) = a × y(k)+ b ×u(k) ↝ a, b = ? (a from def of loadavg)

In steady state (ss)

yss = a × yss + b × uss Ô⇒ b = yss × (1 − a)
uss

Ô⇒ (α + β1f + β2uss + γf uss) × (1 − a)
uss

Ô⇒ b ≃ (β2 + γf) × (1 − a)

Where are we?

Open-Loop
Experiments

✓↝ Model (1st order)
y(k + 1) = a × y(k) + b × u(k)

✓↝ Controller Gains
Kp, Ki , Kd

13/29

3. Devise the model - First order model

First order model: y(k + 1) = a × y(k)+ b ×u(k) ↝ a, b = ? (a from def of loadavg)

In steady state (ss)

yss = a × yss + b × uss Ô⇒ b = yss × (1 − a)
uss

Ô⇒ (α + β1f + β2uss + γf uss) × (1 − a)
uss

Ô⇒ b ≃ (β2 + γf) × (1 − a)

Where are we?

Open-Loop
Experiments

✓↝ Model (1st order)
y(k + 1) = a × y(k) + b × u(k)

✓↝ Controller Gains
Kp, Ki , Kd

13/29

3. Devise the model - First order model

First order model: y(k + 1) = a × y(k)+ b ×u(k) ↝ a, b = ? (a from def of loadavg)

In steady state (ss)

yss = a × yss + b × uss Ô⇒ b = yss × (1 − a)
uss

Ô⇒ (α + β1f + β2uss + γf uss) × (1 − a)
uss

Ô⇒ b ≃ (β2 + γf) × (1 − a)

Where are we?

Open-Loop
Experiments

✓

↝ Model (1st order)
y(k + 1) = a × y(k) + b × u(k)

✓↝ Controller Gains
Kp, Ki , Kd

13/29

3. Devise the model - First order model

First order model: y(k + 1) = a × y(k)+ b ×u(k) ↝ a, b = ? (a from def of loadavg)

In steady state (ss)

yss = a × yss + b × uss Ô⇒ b = yss × (1 − a)
uss

Ô⇒ (α + β1f + β2uss + γf uss) × (1 − a)
uss

Ô⇒ b ≃ (β2 + γf) × (1 − a)

Where are we?

Open-Loop
Experiments

✓↝ Model (1st order)
y(k + 1) = a × y(k) + b × u(k)

✓

↝ Controller Gains
Kp, Ki , Kd

13/29

3. Devise the model - First order model

First order model: y(k + 1) = a × y(k)+ b ×u(k) ↝ a, b = ? (a from def of loadavg)

In steady state (ss)

yss = a × yss + b × uss Ô⇒ b = yss × (1 − a)
uss

Ô⇒ (α + β1f + β2uss + γf uss) × (1 − a)
uss

Ô⇒ b ≃ (β2 + γf) × (1 − a)

Where are we?

Open-Loop
Experiments

✓↝ Model (1st order)
y(k + 1) = a × y(k) + b × u(k)

✓↝ Controller Gains
Kp, Ki , Kd

13/29

4. Design the controller

Controller Gains are ...
functions of the model and

• ks : maximum time to steady state
• Mp: maximum overshoot allowed

Can choose the behavior!

Non-Intrusive Harvesting
• no overshoot
• but "fast" response

ks

Mp

Mp: 0 Mp: 0.25 Mp: 0.5

ks: 5
ks: 10

ks: 15

5 10 15 20 5 10 15 20 5 10 15 20

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

Iterations
O

ut
pu

t V
al

ue
s

Closed loop behaviour of our system for different values of (ks, Mp)

14/29

4. Design the controller

Controller Gains are ...
functions of the model and

• ks : maximum time to steady state
• Mp: maximum overshoot allowed

Can choose the behavior!

Non-Intrusive Harvesting
• no overshoot
• but "fast" response

ks

Mp

Mp: 0 Mp: 0.25 Mp: 0.5

ks: 5
ks: 10

ks: 15

5 10 15 20 5 10 15 20 5 10 15 20

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

Iterations
O

ut
pu

t V
al

ue
s

Closed loop behaviour of our system for different values of (ks, Mp)

14/29

4. Design the controller

Controller Gains are ...
functions of the model and

• ks : maximum time to steady state
• Mp: maximum overshoot allowed

Can choose the behavior!

Non-Intrusive Harvesting
• no overshoot
• but "fast" response

ks

Mp

Mp: 0 Mp: 0.25 Mp: 0.5

ks: 5
ks: 10

ks: 15

5 10 15 20 5 10 15 20 5 10 15 20

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

Iterations
O

ut
pu

t V
al

ue
s

Closed loop behaviour of our system for different values of (ks, Mp)

14/29

5./6. Implement and validate the controller - Evaluation with synthetic jobs

200 MBytes Files

0 2000 4000 6000

0
1
2
3
4
5
6
7
8

F
ile

se
rv

er
 L

oa
d

(y
)

200 MBytes Files

0 2000 4000 6000

0

5

10

15

Time [s]

N
um

be
r

of
 jo

bs
 (

u)

Response of the Controlled System to a Step Perturbation

• constant reference
• synthetic jobs
• step disturbance

Manage to control
the load of the

File-System

takes time to react
↪ might cause

overload

15/29

5./6. Implement and validate the controller - Evaluation with synthetic jobs

200 MBytes Files

0 2000 4000 6000

0
1
2
3
4
5
6
7
8

F
ile

se
rv

er
 L

oa
d

(y
)

200 MBytes Files

0 2000 4000 6000

0

5

10

15

Time [s]

N
um

be
r

of
 jo

bs
 (

u)

Response of the Controlled System to a Step Perturbation

• constant reference
• synthetic jobs
• step disturbance

Manage to control
the load of the

File-System

takes time to react
↪ might cause

overload

15/29

Trade-off: Idleness versus Performance degradation (I/O Overhead)

• MADBench2 [Bor+07]
• various reference values
• compute idle resources
• compute I/O overhead

Trade-off between
Harvesting & I/O

overhead through the
reference value

16/29

A note on controllers’ reusability

• Controllers linked to the identified system
• what if new cluster? new configuration?
• Grid/Cluster administrators
↪ not control theory experts!

• compared 3 controllers (w.r.t. portability,
guarantees, competence required)

• example: Portability vs. Performance

↪ gave recommendations for system
administrators

And
a tut

ori
al!

17/29

A note on controllers’ reusability

• Controllers linked to the identified system
• what if new cluster? new configuration?
• Grid/Cluster administrators
↪ not control theory experts!

• compared 3 controllers (w.r.t. portability,
guarantees, competence required)

• example: Portability vs. Performance

↪ gave recommendations for system
administrators

And
a tut

ori
al!

17/29

Control-based harvesting of idle resources: Wrapping up

Objectives
• Control CiGri submissions based on File-System load ✓
• Control CiGri submissions to reduce idle/killed wasted time ✓
• Can merge controllers! (with some subtelties)
• Guidelines for system administrators ✓
• Tutorial to introduce control theory to computer scientists ✓

Limitations and Perspectives
• Tested with synthetic jobs ↝ real trace
• Need more info about CiGri jobs’ I/O patterns
• Submissions to several clusters
• Sensor for Parallel File-System (PFS) ?

Take Away: Control Theory valuable approach to exploit such trade-offs

18/29

Control-based harvesting of idle resources: Wrapping up

Objectives
• Control CiGri submissions based on File-System load ✓
• Control CiGri submissions to reduce idle/killed wasted time ✓
• Can merge controllers! (with some subtelties)
• Guidelines for system administrators ✓
• Tutorial to introduce control theory to computer scientists ✓

Limitations and Perspectives
• Tested with synthetic jobs ↝ real trace
• Need more info about CiGri jobs’ I/O patterns
• Submissions to several clusters
• Sensor for Parallel File-System (PFS) ?

Take Away: Control Theory valuable approach to exploit such trade-offs

18/29

Experiment costs and reproducibility

A grid middleware needs . . . a grid!

How many machines required
to perform realistic experiments
on a grid middleware like CiGri?

• Simulation: fast ,, modeled /, poor
sensor support /, poor PFS support /

• Full scale: real environment ,,
expensive and difficult /

• Reduced scale: real environment ,,
cheaper ,, realistic ? /

Objective: Low cost, realist experiments
on the real system

Modeled system Real system

Realism

H
ig

h
Lo

w

C
os

t
(E

ne
rg

y/
D

ev
el

op
m

en
t/

D
ep

lo
ym

en
t)

Full scale

Reduced
scale

Simulation

Objective

19/29

A grid middleware needs . . . a grid!

How many machines required
to perform realistic experiments
on a grid middleware like CiGri?

• Simulation: fast ,, modeled /, poor
sensor support /, poor PFS support /

• Full scale: real environment ,,
expensive and difficult /

• Reduced scale: real environment ,,
cheaper ,, realistic ? /

Objective: Low cost, realist experiments
on the real system

Modeled system Real system

Realism

H
ig

h
Lo

w

C
os

t
(E

ne
rg

y/
D

ev
el

op
m

en
t/

D
ep

lo
ym

en
t)

Full scale

Reduced
scale

Simulation

Objective

19/29

A grid middleware needs . . . a grid!

How many machines required
to perform realistic experiments
on a grid middleware like CiGri?

• Simulation: fast ,, modeled /, poor
sensor support /, poor PFS support /

• Full scale: real environment ,,
expensive and difficult /

• Reduced scale: real environment ,,
cheaper ,, realistic ? /

Objective: Low cost, realist experiments
on the real system

Modeled system Real system

Realism

H
ig

h
Lo

w

C
os

t
(E

ne
rg

y/
D

ev
el

op
m

en
t/

D
ep

lo
ym

en
t)

Full scale

Reduced
scale

Simulation

Objective

19/29

A grid middleware needs . . . a grid!

How many machines required
to perform realistic experiments
on a grid middleware like CiGri?

• Simulation: fast ,, modeled /, poor
sensor support /, poor PFS support /

• Full scale: real environment ,,
expensive and difficult /

• Reduced scale: real environment ,,
cheaper ,, realistic ? /

Objective: Low cost, realist experiments
on the real system

Modeled system Real system

Realism

H
ig

h
Lo

w

C
os

t
(E

ne
rg

y/
D

ev
el

op
m

en
t/

D
ep

lo
ym

en
t)

Full scale

Reduced
scale

Simulation

Objective

19/29

A grid middleware needs . . . a grid!

How many machines required
to perform realistic experiments
on a grid middleware like CiGri?

• Simulation: fast ,, modeled /, poor
sensor support /, poor PFS support /

• Full scale: real environment ,,
expensive and difficult /

• Reduced scale: real environment ,,
cheaper ,, realistic ? /

Objective: Low cost, realist experiments
on the real system Modeled system Real system

Realism

H
ig

h
Lo

w

C
os

t
(E

ne
rg

y/
D

ev
el

op
m

en
t/

D
ep

lo
ym

en
t)

Full scale

Reduced
scale

Simulation

Objective

19/29

Emulating a full scale cluster by folding its deployment [Gui+23]

The idea: Deploy more "virtual" resources on one physical machine (≃ oversubscribing)

File System

I/O ops.

Physical Res.
Virtual Res.

Comms.

Scale 1:1

Protocole:
• IOR [Cal23]
• increase folding
• NFS, OrangeFS

+ less resources deployed
+ represents full scale system

+ real system/environment
- new job model: sleep + dd

Reading Writing

0 10 20 30 0 10 20 30

0

5

10

15

20

Number of MPI processes per machine

T
im

e
(s

)

Size of the file to read/write 10M 100M 500M 1G Model

Model of the breaking point in behavior based on folding ratio for OrangeFS

↪ Folding is appropriate until a breaking point that we can model

20/29

Emulating a full scale cluster by folding its deployment [Gui+23]

The idea: Deploy more "virtual" resources on one physical machine (≃ oversubscribing)

File System

I/O ops.

Physical Res.
Virtual Res.

Comms.

Scale 1:2

Protocole:
• IOR [Cal23]
• increase folding
• NFS, OrangeFS

+ less resources deployed
+ represents full scale system

+ real system/environment
- new job model: sleep + dd

Reading Writing

0 10 20 30 0 10 20 30

0

5

10

15

20

Number of MPI processes per machine

T
im

e
(s

)

Size of the file to read/write 10M 100M 500M 1G Model

Model of the breaking point in behavior based on folding ratio for OrangeFS

↪ Folding is appropriate until a breaking point that we can model

20/29

Emulating a full scale cluster by folding its deployment [Gui+23]

The idea: Deploy more "virtual" resources on one physical machine (≃ oversubscribing)

File System

I/O ops.

Comms.
Physical Res.
Virtual Res.

Scale 1:4

Protocole:
• IOR [Cal23]
• increase folding
• NFS, OrangeFS

+ less resources deployed
+ represents full scale system

+ real system/environment
- new job model: sleep + dd

Reading Writing

0 10 20 30 0 10 20 30

0

5

10

15

20

Number of MPI processes per machine

T
im

e
(s

)

Size of the file to read/write 10M 100M 500M 1G Model

Model of the breaking point in behavior based on folding ratio for OrangeFS

↪ Folding is appropriate until a breaking point that we can model

20/29

Emulating a full scale cluster by folding its deployment [Gui+23]

The idea: Deploy more "virtual" resources on one physical machine (≃ oversubscribing)

File System

I/O ops.

Comms.
Physical Res.
Virtual Res.

Scale 1:4

Protocole:
• IOR [Cal23]
• increase folding
• NFS, OrangeFS

+ less resources deployed
+ represents full scale system

+ real system/environment

- new job model: sleep + dd

Reading Writing

0 10 20 30 0 10 20 30

0

5

10

15

20

Number of MPI processes per machine

T
im

e
(s

)

Size of the file to read/write 10M 100M 500M 1G Model

Model of the breaking point in behavior based on folding ratio for OrangeFS

↪ Folding is appropriate until a breaking point that we can model

20/29

Emulating a full scale cluster by folding its deployment [Gui+23]

The idea: Deploy more "virtual" resources on one physical machine (≃ oversubscribing)

File System

I/O ops.

Comms.
Physical Res.
Virtual Res.

Scale 1:4

Protocole:
• IOR [Cal23]
• increase folding
• NFS, OrangeFS

+ less resources deployed
+ represents full scale system

+ real system/environment
- new job model: sleep + dd

Reading Writing

0 10 20 30 0 10 20 30

0

5

10

15

20

Number of MPI processes per machine

T
im

e
(s

)

Size of the file to read/write 10M 100M 500M 1G Model

Model of the breaking point in behavior based on folding ratio for OrangeFS

↪ Folding is appropriate until a breaking point that we can model

20/29

Emulating a full scale cluster by folding its deployment [Gui+23]

The idea: Deploy more "virtual" resources on one physical machine (≃ oversubscribing)

File System

I/O ops.

Comms.
Physical Res.
Virtual Res.

Scale 1:4

Protocole:
• IOR [Cal23]
• increase folding
• NFS, OrangeFS

+ less resources deployed
+ represents full scale system

+ real system/environment
- new job model: sleep + dd

Reading Writing

0 10 20 30 0 10 20 30

0

5

10

15

20

Number of MPI processes per machine

T
im

e
(s

)

Size of the file to read/write 10M 100M 500M 1G Model

Model of the breaking point in behavior based on folding ratio for OrangeFS

↪ Folding is appropriate until a breaking point that we can model

20/29

Emulating a full scale cluster by folding its deployment [Gui+23]

The idea: Deploy more "virtual" resources on one physical machine (≃ oversubscribing)

File System

I/O ops.

Comms.
Physical Res.
Virtual Res.

Scale 1:4

Protocole:
• IOR [Cal23]
• increase folding
• NFS, OrangeFS

+ less resources deployed
+ represents full scale system

+ real system/environment
- new job model: sleep + dd

Reading Writing

0 10 20 30 0 10 20 30

0

5

10

15

20

Number of MPI processes per machine

T
im

e
(s

)

Size of the file to read/write 10M 100M 500M 1G Model

Model of the breaking point in behavior based on folding ratio for OrangeFS

↪ Folding is appropriate until a breaking point that we can model

20/29

Complex Software Environments

cigri-3.0.0

wrapped-ruby-cigri-env

bash-5.1-p16

ruby2.7.6-kgio-2.11.4ruby2.7.6-raindrops-0.20.1

ruby2.7.6-unicorn-6.1.0

ruby2.7.6-xmpp4r-0.5.6

postgresql-14.6

libossp-uuid-1.6.2 libkrb5-1.20

libkrb5-1.20-devncurses-6.3-p20220507-devicu4c-72.1-dev

systemd-251.7

icu4c-72.1

linux-pam-1.5.2 iptables-1.8.8

audit-2.8.5

kbd-2.5.1

systemd-minimal-251.7

npth-1.6

shadow-4.11.1

libpcap-1.10.1p11-kit-0.24.1

zstd-1.5.2-bin

glibc-2.35-163

ruby-2.7.6

zlib-1.2.13

ncurses-6.3-p20220507

gdbm-1.23

readline-6.3p08openssl-1.1.1s

libyaml-0.2.5

libffi-3.4.4

ruby2.7.6-pg-1.4.6

ruby2.7.6-unf_ext-0.0.8.2ruby2.7.6-json-2.6.3

postgresql-14.6-lib

openssl-3.0.7

libxml2-2.10.3

lz4-1.9.4

glibc-2.35-163-bin coreutils-9.1

gnutar-1.34

libxml2-2.10.3-bin

lz4-1.9.4-bin

binutils-2.39

gcc-11.3.0-lib

acl-2.3.1

attr-2.5.1

gmp-with-cxx-stage4-6.2.1

openssl-3.0.7-bin

perl-5.36.0

libxcrypt-4.4.30

libfido2-1.12.0

libbpf-1.0.1

gnupg-2.3.7elfutils-0.188 kmod-30-lib

libapparmor-3.1.2

libgpg-error-1.45

kexec-tools-2.0.25

util-linux-minimal-2.38.1-lib

util-linux-minimal-2.38.1-bin bash-interactive-5.1-p16libseccomp-2.5.4-lib

pcre2-10.40

libgcrypt-1.10.1

cryptsetup-2.5.0

kmod-30

libmicrohttpd-0.9.71

libcap-2.66-lib tpm2-tss-3.2.0

curl-7.86.0

zstd-1.5.2xz-5.2.7bzip2-1.0.8

libcbor-0.9.0pcsclite-1.9.5

libassuan-2.5.5

libcap-ng-0.8.3 readline-8.1p2

lvm2-2.03.16-lib

json-c-0.16

db-4.8.30

gnutls-3.7.8

libnetfilter_conntrack-1.0.9

libnfnetlink-1.0.2

libnftnl-1.2.4

libmnl-1.0.5

unbound-1.17.0-lib

gmp-with-cxx-6.2.1

nettle-3.8.1

libtasn1-4.19.0libevent-2.1.12

bzip2-1.0.8-bin

gzip-1.12

xz-5.2.7-bin

gnugrep-3.7

pcre-8.45 keyutils-1.6.3-lib brotli-1.0.9-lib nghttp2-1.49.0-lib

libssh2-1.10.0

cigri-env

ruby2.7.6-rack-2.2.6.4

ruby2.7.6-rest-client-2.1.0

bundler-2.3.25

ruby2.7.6-domain_name-0.5.20190701

ruby2.7.6-sinatra-3.0.5

ruby2.7.6-tilt-2.1.0

ruby2.7.6-unf-0.1.4

ruby2.7.6-ydbi-0.5.9

gemfile-and-lockfile

libidn2-2.3.2

libunistring-1.0

zlib-1.2.13-dev

libxml2-2.10.3-dev

ruby2.7.6-netrc-0.11.0ruby2.7.6-rack-protection-3.0.5 ruby2.7.6-http-cookie-1.0.5ruby2.7.6-mustermann-3.0.0

ruby2.7.6-deprecated-2.0.1

ruby2.7.6-ydbd-pg-0.5.9

ruby2.7.6-mime-types-3.4.1

ruby2.7.6-mime-types-data-3.2023.0218.1 ruby2.7.6-ruby2_keywords-0.0.5

ruby2.7.6-http-accept-1.7.0

openssl-3.0.7-dev

lz4-1.9.4-dev

getent-glibc-2.35-163

systemd-251.7-dev tzdata-2022f

ncurses-6.3-p20220507-man

hookdns-root-data-2019-01-11

Graph of CiGri’s software dependencies

↪ and RJMS, PFS, jobs, etc. ↝ very complex to manage/modify

How to develop/deploy easily complex software
environments in a reproducible fashion?

21/29

Complex Software Environments

cigri-3.0.0

wrapped-ruby-cigri-env

bash-5.1-p16

ruby2.7.6-kgio-2.11.4ruby2.7.6-raindrops-0.20.1

ruby2.7.6-unicorn-6.1.0

ruby2.7.6-xmpp4r-0.5.6

postgresql-14.6

libossp-uuid-1.6.2 libkrb5-1.20

libkrb5-1.20-devncurses-6.3-p20220507-devicu4c-72.1-dev

systemd-251.7

icu4c-72.1

linux-pam-1.5.2 iptables-1.8.8

audit-2.8.5

kbd-2.5.1

systemd-minimal-251.7

npth-1.6

shadow-4.11.1

libpcap-1.10.1p11-kit-0.24.1

zstd-1.5.2-bin

glibc-2.35-163

ruby-2.7.6

zlib-1.2.13

ncurses-6.3-p20220507

gdbm-1.23

readline-6.3p08openssl-1.1.1s

libyaml-0.2.5

libffi-3.4.4

ruby2.7.6-pg-1.4.6

ruby2.7.6-unf_ext-0.0.8.2ruby2.7.6-json-2.6.3

postgresql-14.6-lib

openssl-3.0.7

libxml2-2.10.3

lz4-1.9.4

glibc-2.35-163-bin coreutils-9.1

gnutar-1.34

libxml2-2.10.3-bin

lz4-1.9.4-bin

binutils-2.39

gcc-11.3.0-lib

acl-2.3.1

attr-2.5.1

gmp-with-cxx-stage4-6.2.1

openssl-3.0.7-bin

perl-5.36.0

libxcrypt-4.4.30

libfido2-1.12.0

libbpf-1.0.1

gnupg-2.3.7elfutils-0.188 kmod-30-lib

libapparmor-3.1.2

libgpg-error-1.45

kexec-tools-2.0.25

util-linux-minimal-2.38.1-lib

util-linux-minimal-2.38.1-bin bash-interactive-5.1-p16libseccomp-2.5.4-lib

pcre2-10.40

libgcrypt-1.10.1

cryptsetup-2.5.0

kmod-30

libmicrohttpd-0.9.71

libcap-2.66-lib tpm2-tss-3.2.0

curl-7.86.0

zstd-1.5.2xz-5.2.7bzip2-1.0.8

libcbor-0.9.0pcsclite-1.9.5

libassuan-2.5.5

libcap-ng-0.8.3 readline-8.1p2

lvm2-2.03.16-lib

json-c-0.16

db-4.8.30

gnutls-3.7.8

libnetfilter_conntrack-1.0.9

libnfnetlink-1.0.2

libnftnl-1.2.4

libmnl-1.0.5

unbound-1.17.0-lib

gmp-with-cxx-6.2.1

nettle-3.8.1

libtasn1-4.19.0libevent-2.1.12

bzip2-1.0.8-bin

gzip-1.12

xz-5.2.7-bin

gnugrep-3.7

pcre-8.45 keyutils-1.6.3-lib brotli-1.0.9-lib nghttp2-1.49.0-lib

libssh2-1.10.0

cigri-env

ruby2.7.6-rack-2.2.6.4

ruby2.7.6-rest-client-2.1.0

bundler-2.3.25

ruby2.7.6-domain_name-0.5.20190701

ruby2.7.6-sinatra-3.0.5

ruby2.7.6-tilt-2.1.0

ruby2.7.6-unf-0.1.4

ruby2.7.6-ydbi-0.5.9

gemfile-and-lockfile

libidn2-2.3.2

libunistring-1.0

zlib-1.2.13-dev

libxml2-2.10.3-dev

ruby2.7.6-netrc-0.11.0ruby2.7.6-rack-protection-3.0.5 ruby2.7.6-http-cookie-1.0.5ruby2.7.6-mustermann-3.0.0

ruby2.7.6-deprecated-2.0.1

ruby2.7.6-ydbd-pg-0.5.9

ruby2.7.6-mime-types-3.4.1

ruby2.7.6-mime-types-data-3.2023.0218.1 ruby2.7.6-ruby2_keywords-0.0.5

ruby2.7.6-http-accept-1.7.0

openssl-3.0.7-dev

lz4-1.9.4-dev

getent-glibc-2.35-163

systemd-251.7-dev tzdata-2022f

ncurses-6.3-p20220507-man

hookdns-root-data-2019-01-11

Graph of CiGri’s software dependencies

↪ and RJMS, PFS, jobs, etc. ↝ very complex to manage/modify

How to develop/deploy easily complex software
environments in a reproducible fashion?

21/29

Complex Software Environments

cigri-3.0.0

wrapped-ruby-cigri-env

bash-5.1-p16

ruby2.7.6-kgio-2.11.4ruby2.7.6-raindrops-0.20.1

ruby2.7.6-unicorn-6.1.0

ruby2.7.6-xmpp4r-0.5.6

postgresql-14.6

libossp-uuid-1.6.2 libkrb5-1.20

libkrb5-1.20-devncurses-6.3-p20220507-devicu4c-72.1-dev

systemd-251.7

icu4c-72.1

linux-pam-1.5.2 iptables-1.8.8

audit-2.8.5

kbd-2.5.1

systemd-minimal-251.7

npth-1.6

shadow-4.11.1

libpcap-1.10.1p11-kit-0.24.1

zstd-1.5.2-bin

glibc-2.35-163

ruby-2.7.6

zlib-1.2.13

ncurses-6.3-p20220507

gdbm-1.23

readline-6.3p08openssl-1.1.1s

libyaml-0.2.5

libffi-3.4.4

ruby2.7.6-pg-1.4.6

ruby2.7.6-unf_ext-0.0.8.2ruby2.7.6-json-2.6.3

postgresql-14.6-lib

openssl-3.0.7

libxml2-2.10.3

lz4-1.9.4

glibc-2.35-163-bin coreutils-9.1

gnutar-1.34

libxml2-2.10.3-bin

lz4-1.9.4-bin

binutils-2.39

gcc-11.3.0-lib

acl-2.3.1

attr-2.5.1

gmp-with-cxx-stage4-6.2.1

openssl-3.0.7-bin

perl-5.36.0

libxcrypt-4.4.30

libfido2-1.12.0

libbpf-1.0.1

gnupg-2.3.7elfutils-0.188 kmod-30-lib

libapparmor-3.1.2

libgpg-error-1.45

kexec-tools-2.0.25

util-linux-minimal-2.38.1-lib

util-linux-minimal-2.38.1-bin bash-interactive-5.1-p16libseccomp-2.5.4-lib

pcre2-10.40

libgcrypt-1.10.1

cryptsetup-2.5.0

kmod-30

libmicrohttpd-0.9.71

libcap-2.66-lib tpm2-tss-3.2.0

curl-7.86.0

zstd-1.5.2xz-5.2.7bzip2-1.0.8

libcbor-0.9.0pcsclite-1.9.5

libassuan-2.5.5

libcap-ng-0.8.3 readline-8.1p2

lvm2-2.03.16-lib

json-c-0.16

db-4.8.30

gnutls-3.7.8

libnetfilter_conntrack-1.0.9

libnfnetlink-1.0.2

libnftnl-1.2.4

libmnl-1.0.5

unbound-1.17.0-lib

gmp-with-cxx-6.2.1

nettle-3.8.1

libtasn1-4.19.0libevent-2.1.12

bzip2-1.0.8-bin

gzip-1.12

xz-5.2.7-bin

gnugrep-3.7

pcre-8.45 keyutils-1.6.3-lib brotli-1.0.9-lib nghttp2-1.49.0-lib

libssh2-1.10.0

cigri-env

ruby2.7.6-rack-2.2.6.4

ruby2.7.6-rest-client-2.1.0

bundler-2.3.25

ruby2.7.6-domain_name-0.5.20190701

ruby2.7.6-sinatra-3.0.5

ruby2.7.6-tilt-2.1.0

ruby2.7.6-unf-0.1.4

ruby2.7.6-ydbi-0.5.9

gemfile-and-lockfile

libidn2-2.3.2

libunistring-1.0

zlib-1.2.13-dev

libxml2-2.10.3-dev

ruby2.7.6-netrc-0.11.0ruby2.7.6-rack-protection-3.0.5 ruby2.7.6-http-cookie-1.0.5ruby2.7.6-mustermann-3.0.0

ruby2.7.6-deprecated-2.0.1

ruby2.7.6-ydbd-pg-0.5.9

ruby2.7.6-mime-types-3.4.1

ruby2.7.6-mime-types-data-3.2023.0218.1 ruby2.7.6-ruby2_keywords-0.0.5

ruby2.7.6-http-accept-1.7.0

openssl-3.0.7-dev

lz4-1.9.4-dev

getent-glibc-2.35-163

systemd-251.7-dev tzdata-2022f

ncurses-6.3-p20220507-man

hookdns-root-data-2019-01-11

Graph of CiGri’s software dependencies

↪ and RJMS, PFS, jobs, etc. ↝ very complex to manage/modify

How to develop/deploy easily complex software
environments in a reproducible fashion?

21/29

Generating Distributed Software Environments

↪ Difficult, Time-consuming, Script-based tools, and Iterative process

≃ 10/15 mins ≃ 5/10 mins
↪ Easy to depend on an external state: base image, apt mirror, git repository

↪ Usual tools do not encourage good reproducibility practices

22/29

Generating Distributed Software Environments

↪ Difficult, Time-consuming, Script-based tools, and Iterative process

≃ 10/15 mins ≃ 5/10 mins
↪ Easy to depend on an external state: base image, apt mirror, git repository

↪ Usual tools do not encourage good reproducibility practices

22/29

One tool, One platform

‘So essentially, I want to create a debian12-nfs.qcow2 for VMs equivalent
to grid5000’s debian12-nfs image. One painful way to achieve this would be
to install every single thing using the package manager and resolving conflicts
by hand.’ (Grid’5000 User, 2023)

↪ Be able to develop distributed environments locally and then export

23/29

One tool, One platform

‘So essentially, I want to create a debian12-nfs.qcow2 for VMs equivalent
to grid5000’s debian12-nfs image. One painful way to achieve this would be
to install every single thing using the package manager and resolving conflicts
by hand.’ (Grid’5000 User, 2023)

↪ Be able to develop distributed environments locally and then export

23/29

Functional package managers

• Nix , Guix reproducible by design!
• packages = functions

• inputs = dependencies
• body = commands to build the package

• base packages defined in Git
• sandbox, no side effect
• /nix/store/hash(inputs)-my-pkg

• immutable, read-only
• precise definition of $PATH

• can build: container, VM, system images

F

G

Base Packages (b6a36171)

Package
Defs.

Resulting Package

24/29

Functional package managers

• Nix , Guix reproducible by design!
• packages = functions

• inputs = dependencies
• body = commands to build the package

• base packages defined in Git
• sandbox, no side effect
• /nix/store/hash(inputs)-my-pkg

• immutable, read-only
• precise definition of $PATH

• can build: container, VM, system images

F

G

Base Packages (10028b48)

Package
Defs.

Resulting Package

24/29

NixOS Compose [Gui+22]
1 { pkgs , ... }:
2 let k3sToken = "..."; in {
3 roles = {
4 server = { pkgs , ... }: {
5 environment . systemPackages = with pkgs; [
6 k3s gzip
7];
8 networking . firewall . allowedTCPPorts = [
9 6443

10];
11 services .k3s = {
12 enable = true;
13 role = " server ";
14 package = pkgs.k3s;
15 extraFlags = "--agent -token ${ k3sToken }";
16 };
17 };
18 agent = { pkgs , ... }: {
19 environment . systemPackages = with pkgs; [
20 k3s gzip
21];
22 services .k3s = {
23 enable = true;
24 role = "agent ";
25 serverAddr = "https :// server :6443";
26 token = k3sToken ;
27 };
28 };
29 };
30 }

Packages

Ports

Services

• Python + Nix (≃ 4000 l.o.c.)
• developing/deploying distributed systems
• single description (in Nix), multiple targets
• docker-compose, VM, ramdisk, system image
• can quickly setup distributed envs locally!
• build, deploy, connect: unique interface
• contextualization (ssh keys, /etc/hosts, etc.)
• integration with Execo [Imb+13]
• a few, but happy, users ,

25/29

Comparisons - Setting up a distributed environments on Grid’5000

Kameleon [Rui+15]

build ↝ modify (add hello) ↝ build
again

EnOSlib [Che+22]

flent

Build Sub + Deploy Provisioning Run
0

100

200

300

Phases

Ti
m

e
[s

]

EnOSlib nxc−g5k−ramdisk nxc−g5k−image

NixOS Compose ↝ provisioning done in image

↪ Fast builds, faster rebuilds ↝ reduces development cycles
↪ Fast deploys, reduce provisioning phases

26/29

Comparisons - Setting up a distributed environments on Grid’5000

Kameleon [Rui+15]

build ↝ modify (add hello) ↝ build
again

EnOSlib [Che+22]

flent

Build Sub + Deploy Provisioning Run
0

100

200

300

Phases

Ti
m

e
[s

]

EnOSlib nxc−g5k−ramdisk nxc−g5k−image

NixOS Compose ↝ provisioning done in image

↪ Fast builds, faster rebuilds ↝ reduces development cycles
↪ Fast deploys, reduce provisioning phases

26/29

Comparisons - Setting up a distributed environments on Grid’5000

Kameleon [Rui+15]

build ↝ modify (add hello) ↝ build
again

EnOSlib [Che+22]

flent

Build Sub + Deploy Provisioning Run
0

100

200

300

Phases

Ti
m

e
[s

]

EnOSlib nxc−g5k−ramdisk nxc−g5k−image

NixOS Compose ↝ provisioning done in image

↪ Fast builds, faster rebuilds ↝ reduces development cycles
↪ Fast deploys, reduce provisioning phases

26/29

Experiment costs and reproducibility: Wrapping up

Objectives
• Reduce cost of experimenting with

grid/cluster middlewares ✓
• Improve development cycles for

reproducible experiments ✓

Limitations and Perspectives
• More popular Parallel File-Systems
• Source of the performance loss unclear
• Other platforms for NixOS Compose
• Hybrid/folded deployments
• Simulation: PFS and sensors

Modeled system Real system

Realism

H
ig

h
Lo

w

C
os

t
(E

ne
rg

y/
D

ev
el

op
m

en
t/

D
ep

lo
ym

en
t)

Simulation

Full scale

Reduced
scale

Objective

Folding

Full scale

Reduced
scale

Folding

NixOS
Compose

Take Away: Reduced the time/energy cost to experi-
ment with distributed systems, and improve reproducibility

27/29

Experiment costs and reproducibility: Wrapping up

Objectives
• Reduce cost of experimenting with

grid/cluster middlewares ✓
• Improve development cycles for

reproducible experiments ✓

Limitations and Perspectives
• More popular Parallel File-Systems
• Source of the performance loss unclear
• Other platforms for NixOS Compose
• Hybrid/folded deployments
• Simulation: PFS and sensors

Modeled system Real system

Realism

H
ig

h
Lo

w

C
os

t
(E

ne
rg

y/
D

ev
el

op
m

en
t/

D
ep

lo
ym

en
t)

Simulation

Full scale

Reduced
scale

Objective

Folding

Full scale

Reduced
scale

Folding

NixOS
Compose

Take Away: Reduced the time/energy cost to experi-
ment with distributed systems, and improve reproducibility

27/29

Experiment costs and reproducibility: Wrapping up

Objectives
• Reduce cost of experimenting with

grid/cluster middlewares ✓
• Improve development cycles for

reproducible experiments ✓

Limitations and Perspectives
• More popular Parallel File-Systems
• Source of the performance loss unclear
• Other platforms for NixOS Compose
• Hybrid/folded deployments
• Simulation: PFS and sensors

Modeled system Real system

Realism

H
ig

h
Lo

w

C
os

t
(E

ne
rg

y/
D

ev
el

op
m

en
t/

D
ep

lo
ym

en
t)

Simulation

Full scale

Reduced
scale

Objective

Folding

Full scale

Reduced
scale

Folding

NixOS
Compose

Take Away: Reduced the time/energy cost to experi-
ment with distributed systems, and improve reproducibility

27/29

Experiment costs and reproducibility: Wrapping up

Objectives
• Reduce cost of experimenting with

grid/cluster middlewares ✓
• Improve development cycles for

reproducible experiments ✓

Limitations and Perspectives
• More popular Parallel File-Systems
• Source of the performance loss unclear
• Other platforms for NixOS Compose
• Hybrid/folded deployments
• Simulation: PFS and sensors

Modeled system Real system

Realism

H
ig

h
Lo

w

C
os

t
(E

ne
rg

y/
D

ev
el

op
m

en
t/

D
ep

lo
ym

en
t)

Simulation

Full scale

Reduced
scale

Objective

Folding

Full scale

Reduced
scale

Folding

NixOS
ComposeTake Away: Reduced the time/energy cost to experi-

ment with distributed systems, and improve reproducibility

27/29

Concluding thoughts

Conclusion

Initial Problem

How to harvest HPC idle resources while controlling the impact on the priority jobs?

Contributions

• Design/implement an Autonomic loop in CiGri...
• to control the load of the File-System ↝ control overhead, avoid overload
• to reduce the wasted computing power (idle and killed)

• ... using Control Theory
• yields guarantees and explainability
• guidelines for system administrators, tutorial

• Reduce experiment costs
• reduce number of machines to deploy without loss of realism
• tool for developing and deploying reproducible distributed environments 28/29

Open question

CiGri
Improve usage of computing clusters

Folding
Reduce number of physical machines required to represent a full scale cluster

NixOS Compose
Reduce development time, and reduce "test" deployments

But can it introduce a rebound effect?

29/29

Open question

CiGri
Improve usage of computing clusters

Folding
Reduce number of physical machines required to represent a full scale cluster

NixOS Compose
Reduce development time, and reduce "test" deployments

But can it introduce a rebound effect?

29/29

How to choose the reference value?

• Normalized loadavg then fix to 75%, 90%, 95%, etc.

• How much burst to sustain?

• dynamic reference value
• based on number of priority jobs and historical I/O data (e.g., Darshan [Car+11])

ymax yref ,k ek
Controller

uk System

yk

-
++-

Priority jobs
(Disturbance)

dkyprio,k

f̄

fmodel

How to choose the reference value?

• Normalized loadavg then fix to 75%, 90%, 95%, etc.
• How much burst to sustain?

• dynamic reference value
• based on number of priority jobs and historical I/O data (e.g., Darshan [Car+11])

ymax yref ,k ek
Controller

uk System

yk

-
++-

Priority jobs
(Disturbance)

dkyprio,k

f̄

fmodel

How to choose the reference value?

• Normalized loadavg then fix to 75%, 90%, 95%, etc.
• How much burst to sustain?

• dynamic reference value
• based on number of priority jobs and historical I/O data (e.g., Darshan [Car+11])

ymax yref ,k ek
Controller

uk System

yk

-
++-

Priority jobs
(Disturbance)

dkyprio,k

f̄

fmodel

Beyond idle resources

Wasted computing power: Idle resources, but also

killed jobs!

ek
Controller

uk System

runningk +waitingk

-
+

Priority jobs
(Disturbance)

rmaxrmax yref ,k+-

dh
k

• anticipate variations in
available resources

• new sensor (modify OAR)
• provisional Gantt chart
• horizon

Can reduce both idle and killed time, and energy usage!

Beyond idle resources

Wasted computing power: Idle resources, but also killed jobs!

ek
Controller

uk System

runningk +waitingk

-
+

Priority jobs
(Disturbance)

rmax

rmax yref ,k+-

dh
k

• anticipate variations in
available resources

• new sensor (modify OAR)
• provisional Gantt chart
• horizon

Can reduce both idle and killed time, and energy usage!

Beyond idle resources

Wasted computing power: Idle resources, but also killed jobs!

ek
Controller

uk System

runningk +waitingk

-
+

Priority jobs
(Disturbance)

rmax

rmax yref ,k+-

dh
k

• anticipate variations in
available resources

• new sensor (modify OAR)
• provisional Gantt chart
• horizon

Can reduce both idle and killed time, and energy usage!

Beyond idle resources

Wasted computing power: Idle resources, but also killed jobs!

ek
Controller

uk System

runningk +waitingk

-
+

Priority jobs
(Disturbance)

rmax

rmax yref ,k+-

dh
k

• anticipate variations in
available resources

• new sensor (modify OAR)
• provisional Gantt chart

• horizon

Can reduce both idle and killed time, and energy usage!

Beyond idle resources

Wasted computing power: Idle resources, but also killed jobs!

ek
Controller

uk System

runningk +waitingk

-
+

Priority jobs
(Disturbance)

rmax

rmax yref ,k+-

dh
k

• anticipate variations in
available resources

• new sensor (modify OAR)
• provisional Gantt chart
• horizon

Can reduce both idle and killed time, and energy usage!

Beyond idle resources

Wasted computing power: Idle resources, but also killed jobs!

ek
Controller

uk System

runningk +waitingk

-
+

Priority jobs
(Disturbance)

rmax

rmax yref ,k+-

dh
k

• anticipate variations in
available resources

• new sensor (modify OAR)
• provisional Gantt chart
• horizon

Can reduce both idle and killed time, and energy usage!

Beyond idle resources - Results

Idle Resources Killed Jobs

pj =
 30s

pj =
 60s

pj =
 240s

None 30s 1m 1m30 2m 2m30 3m 3m30 4m None 30s 1m 1m30 2m 2m30 3m 3m30 4m

0

5

10

15

0

2

4

6

0

4

8

12

Horizon

Lo
st

 c
om

pu
te

 ti
m

e
[%

]

Energy point−of−view

Computing Time point−of−view

None 30s 1m 1m30 2m 2m30 3m 3m30 4m

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Horizon
G

ai
n

pj 30s 60s 240s

Beyond idle resources - Results

484
484
484
484
484

484

484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484

478
478

478

478
478
478
478
4780

8

16

24

32

0 1000 2000 3000 4000
Time [s]

R
es

ou
rc

es

CiGri Normal

Waiting + Running Best−effort resources (y)

Best−effort resources submitted by CiGri (u)

0 1000 2000 3000 4000

0

10

20

30

40

0

20

40

60

Time [s]

Reusability

PI aPI MFC

50 M
B

ytes F
iles

100 M
B

ytes F
iles

200 M
B

ytes F
iles

400 M
B

ytes F
iles

0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

Time [s]

F
ile

se
rv

er
 L

oa
d

(y
)

Comparison with variations in the I/O impact of jobs

PI aPI MFC

10 sec Jobs
30 sec Jobs

60 sec Jobs
120 sec Jobs

0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

Time [s]

F
ile

se
rv

er
 L

oa
d

(y
)

Comparison with variations in the execution time of jobs

Reusability - Metrics

Rapidity

Precision

Overshoot

50 100 200 400

0

2

4

6

0.0

0.5

1.0

1.5

2.0

0

500

1000

1500

File size [MBytes]

Controllers PI aPI MFC

Rapidity

Precision

Overshoot

10 30 60 120

0

1

2

3

0.0

0.5

1.0

1.5

0

500

1000

1500

Execution times [s]

Controllers PI aPI MFC

How to store the packages?

Usual approach: Merge them all

- Conflicts
- PATH=/usr/bin

/usr
├── bin
│ └── myprogram
└── lib
 ├── libc.so
 └── libmylib.so

Nix approach: Keep them separated

+ Pkg variation
+ Isolated
+ Well def. PATH

+ Read-only

/nix/store
├── y9zg6ryffgc5c9y67fcmfdkyyiivjzpj-glibc-2.27
│ └── lib
│ └── libc.so
└── nc5qbagm3wqfg2lv1gwj3r3bn88dpqr8-mypkg-0.1.0
 └── bin
 └── myprogram
 └── lib
 └── libmylib.so

References i

1 R. Bleuse, “Apprehending heterogeneity at (very) large scale,” Theses (Université
Grenoble Alpes, Oct. 2017).

2 J. Borrill et al., “Investigation of leading hpc i/o performance using a
scientific-application derived benchmark,” in Proceedings of the 2007 acm/ieee
conference on supercomputing (2007), pp. 1–12.

3 U. of California, Ior benchmark, 2023.
4 P. Carns et al., “Understanding and improving computational science storage access

through continuous characterization,” ACM Transactions on Storage (TOS) 7, 1–26
(2011).

References ii

5 R.-A. Cherrueau et al., “EnosLib: A Library for Experiment-Driven Research in
Distributed Computing,” en, IEEE Transactions on Parallel and Distributed Systems
33, 1464–1477 (2022).

6 A. Déprez et al., “Toward the generation of epos-gnss products,” in 19th general
assembly of wegener: on earth deformation & the study of earthquakes using geodesy
and geodynamics (2018).

7 D. Ferrari et al., An empirical investigation of load indices for load balancing
applications, (Computer Science Division, University of California, 1987).

8 A. Filieri et al., “Software engineering meets control theory,” in 2015 ieee/acm 10th
international symposium on software engineering for adaptive and self-managing
systems (IEEE, 2015), pp. 71–82.

https://doi.org/10.1109/TPDS.2021.3111159
https://doi.org/10.1109/TPDS.2021.3111159

References iii

9 Y. Georgiou et al., “Evaluations of the lightweight grid cigri upon the grid5000
platform,” in Third ieee international conference on e-science and grid computing
(e-science 2007) (IEEE, 2007), pp. 279–286.

10Q. Guilloteau et al., “Étude des applications bag-of-tasks du méso-centre gricad,” in
COMPAS 2022 - Conférence francophone d’informatique en Parallélisme,
Architecture et Système (July 2022), pp. 1–7.

11Q. Guilloteau et al., “Folding a Cluster containing a Distributed File-System,”
working paper or preprint, 2023.

https://hal.archives-ouvertes.fr/hal-03702246
https://hal.archives-ouvertes.fr/hal-03702246

References iv

12Q. Guilloteau et al., “Painless Transposition of Reproducible Distributed
Environments with NixOS Compose,” in CLUSTER 2022 - IEEE International
Conference on Cluster Computing, Vol. CLUSTER 2022 - IEEE International
Conference on Cluster Computing (Sept. 2022), pp. 1–12.

13M. Imbert et al., “Using the EXECO toolbox to perform automatic and reproducible
cloud experiments,” in 1st International Workshop on UsiNg and building ClOud
Testbeds (UNICO, collocated with IEEE CloudCom 2013 (Dec. 2013).

14J. O. Kephart et al., “The vision of autonomic computing,” Computer 36, 41–50
(2003).

https://hal.science/hal-03723771
https://hal.science/hal-03723771
https://doi.org/10.1109/CloudCom.2013.119
https://doi.org/10.1109/CloudCom.2013.119

References v

15M. Mercier et al., “Big data and hpc collocation: using hpc idle resources for big
data analytics,” in 2017 ieee international conference on big data (big data) (IEEE,
2017), pp. 347–352.

16B. Przybylski et al., “Using unused: non-invasive dynamic faas infrastructure with
hpc-whisk,” in Sc22: international conference for high performance computing,
networking, storage and analysis (IEEE, 2022), pp. 1–15.

17C. Ruiz et al., “Reconstructable Software Appliances with Kameleon,” en, ACM
SIGOPS Operating Systems Review 49, 80–89 (2015).

https://doi.org/10.1145/2723872.2723883
https://doi.org/10.1145/2723872.2723883

	Harvesting idle resources
	Experiment costs and reproducibility
	Concluding thoughts
	Appendix

