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High Performance Computing (HPC)

/

,
Computations too demanding ↝ need several powerful machines

↪ expensive ↝ shared ↝ reservation process
2/29



Resouces and Job Management System

HPC Jobs
• Some computations
• Static resource allocation
• Static time allocation

HPC Cluster
• Computing nodes
• Interconnected
• High speed network, I/O Resources and Jobs Management System [Ble17]

↪ How to harvest?

Idle Resources = Wasted Computing Power and Money

3/29
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Harvesting Idle Resources

Main idea: Use smaller, killable jobs (e.g., Big Data [Mer+17], FaaS [Prz+22])

CiGri [GRC07]
• Grid middleware used at Gricad
• Bag-of-tasks: many, multi-parametric
• Best-effort Jobs: Lowest priority
• Objectives:

• Collect grid idle resources
• Reduce pressure on RJMS

• Submits like a periodic tap
• submits jobs then,
• waits for all jobs to terminate
↪ suboptimal!

 

OAR

Cigri

OAR

Cluster 1 Cluster 2

Compute
Nodes

Bag-of-Tasks

Local
Users
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CiGri jobs [GRR22]

Gricad

DAS2
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10 years, 44 Millions jobs

Example: BigGNSS [Dép+18]
• A lot of satellites Ô⇒ a lot of data
• Several stations ↝ Campaigns
• Subdivision of the processing ↝ Jobs
• Unique binary + different inputs
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Problem formulation

Problem

↗ Harvesting Ô⇒ ↗ Performance Degradation ↝ Trade-off

↪ Unpredictability Ô⇒ runtime management

In this PhD thesis

1. How to submit CiGri jobs to harvest idle resources with
controlled degradation for priority users?

2. How to improve the cost and reproducibility of experiments
on grid/cluster systems?

6/29
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Harvesting idle resources



Runtime Management: Autonomic Computing (AC)

and Control Theory

AC and the MAPE-K Loop [KC03]
• Auto-regulation given high-level

objectives
• implementations: rules, AI, etc.

Control Theory
• Regulate dynamical systems
• physical systems
• mathematically proven properties
• performance, robustness,

explainability

Reference Error
Controller

Input
System

Disturbances

Output

Sensor
Measure

-

+
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1. Identify the goals

Problem formulation
• Use Control Theory to....
• ...harvest idle resources...
• ...in a non-intrusive way
• max cluster utilization
• min degradation of performance

↪ Focus on I/O degradation Steps to design a controller [Fil+15]

8/29



2. Identify the knobs

Actuators (u)
Number of jobs submitted by CiGri

Sensors (y)

• File-System (NFS):
• indirect measure of overhead
• /proc/loadavg [FZ87]

• ≃ number of processes running
• well known by system administrators
• Exponential Smoothing ↝ Inertia
↪ Nice for the control

• know limits of sensor

• Cluster: OAR API (nb running, waiting jobs)

Ove
rlo

ad
!
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Feedback loop in CiGri

CiGri

OAR

I/O

File-Sys.

Submit

Schedule

Cluster

Local
Users

Campaign

Task

Controller

loadavg

OAR Sensors

Tap

Reference value: acceptable load on the File-System, chosen by system admins 10/29



3. Devise the model

First, a Model ... (i.e., how does the system behave without Control)

y(k + 1) =
k
∑
i=0

ai × y(k − i) +
k
∑
j=0

bj × u(k − j)

... then a (P

ID

) Controller (i.e., the Closed-Loop behavior)

u(k) = Kp × Error(k)

+Ki ×
k
∑
i

Error(i) + Kd × (Error(k) − Error(k − 1))

Sensors & Actuators
• Actuator: #jobs to sub ↝ u
• Sensor: FS Load ↝ y
• Error(k) = Reference − Sensor(k)

Methodology

1. Open-Loop experiments (fixed u)
2. Model parameters (ai , bj)
3. Choice controller behavior (K∗) 11/29
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3. Devise the model - Open-Loop Experiments

• "step" inputs
• ≠ I/O loads (f )
• observe behavior
• linear model

yss = α+β1f +β2u+γf u

Models

Model Max

Model Mean
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3. Devise the model - First order model

First order model: y(k + 1) = a × y(k)+ b ×u(k) ↝ a, b = ?

(a from def of loadavg)

In steady state (ss)

yss = a × yss + b × uss

Ô⇒ b = yss × (1 − a)
uss

Ô⇒ (α + β1f + β2uss + γf uss) × (1 − a)
uss

Ô⇒ b ≃ (β2 + γf ) × (1 − a)

Where are we?

Open-Loop
Experiments

✓↝ Model (1st order)
y(k + 1) = a × y(k) + b × u(k)

✓↝ Controller Gains
Kp, Ki , Kd

13/29
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4. Design the controller

Controller Gains are ...
functions of the model and

• ks : maximum time to steady state
• Mp: maximum overshoot allowed

Can choose the behavior!

Non-Intrusive Harvesting
• no overshoot
• but "fast" response

ksksksksksksksksksksksksksksksksksksksks
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5./6. Implement and validate the controller - Evaluation with synthetic jobs
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• step disturbance

Manage to control
the load of the

File-System

takes time to react
↪ might cause

overload
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Trade-off: Idleness versus Performance degradation (I/O Overhead)

• MADBench2 [Bor+07]
• various reference values
• compute idle resources
• compute I/O overhead

Trade-off between
Harvesting & I/O

overhead through the
reference value

16/29



A note on controllers’ reusability

• Controllers linked to the identified system
• what if new cluster? new configuration?
• Grid/Cluster administrators
↪ not control theory experts!

• compared 3 controllers (w.r.t. portability,
guarantees, competence required)

• example: Portability vs. Performance

↪ gave recommendations for system
administrators

And
a tut

ori
al!
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Control-based harvesting of idle resources: Wrapping up

Objectives
• Control CiGri submissions based on File-System load ✓
• Control CiGri submissions to reduce idle/killed wasted time ✓
• Can merge controllers! (with some subtelties)
• Guidelines for system administrators ✓
• Tutorial to introduce control theory to computer scientists ✓

Limitations and Perspectives
• Tested with synthetic jobs ↝ real trace
• Need more info about CiGri jobs’ I/O patterns
• Submissions to several clusters
• Sensor for Parallel File-System (PFS) ?

Take Away: Control Theory valuable approach to exploit such trade-offs

18/29
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Experiment costs and reproducibility



A grid middleware needs . . . a grid!

How many machines required
to perform realistic experiments
on a grid middleware like CiGri?

• Simulation: fast ,, modeled /, poor
sensor support /, poor PFS support /

• Full scale: real environment ,,
expensive and difficult /

• Reduced scale: real environment ,,
cheaper ,, realistic ? /

Objective: Low cost, realist experiments
on the real system
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Emulating a full scale cluster by folding its deployment [Gui+23]

The idea: Deploy more "virtual" resources on one physical machine (≃ oversubscribing)

File System

I/O ops.

Physical Res.
Virtual Res.

Comms.

Scale 1:1

Protocole:
• IOR [Cal23]
• increase folding
• NFS, OrangeFS

+ less resources deployed
+ represents full scale system

+ real system/environment
- new job model: sleep + dd

Reading Writing
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Model of the breaking point in behavior based on folding ratio for OrangeFS
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↪ and RJMS, PFS, jobs, etc. ↝ very complex to manage/modify

How to develop/deploy easily complex software
environments in a reproducible fashion?
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Generating Distributed Software Environments

↪ Difficult, Time-consuming, Script-based tools, and Iterative process

≃ 10/15 mins ≃ 5/10 mins
↪ Easy to depend on an external state: base image, apt mirror, git repository

↪ Usual tools do not encourage good reproducibility practices
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One tool, One platform

‘So essentially, I want to create a debian12-nfs.qcow2 for VMs equivalent
to grid5000’s debian12-nfs image. One painful way to achieve this would be
to install every single thing using the package manager and resolving conflicts
by hand.’ (Grid’5000 User, 2023)

↪ Be able to develop distributed environments locally and then export
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Functional package managers

• Nix , Guix reproducible by design!
• packages = functions

• inputs = dependencies
• body = commands to build the package

• base packages defined in Git
• sandbox, no side effect
• /nix/store/hash(inputs)-my-pkg

• immutable, read-only
• precise definition of $PATH

• can build: container, VM, system images

F

G

Base Packages (b6a36171)

Package
Defs.

Resulting Package
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NixOS Compose [Gui+22]
1 { pkgs , ... }:
2 let k3sToken = "..."; in {
3 roles = {
4 server = { pkgs , ... }: {
5 environment . systemPackages = with pkgs; [
6 k3s gzip
7 ];
8 networking . firewall . allowedTCPPorts = [
9 6443

10 ];
11 services .k3s = {
12 enable = true;
13 role = " server ";
14 package = pkgs.k3s;
15 extraFlags = "--agent -token ${ k3sToken }";
16 };
17 };
18 agent = { pkgs , ... }: {
19 environment . systemPackages = with pkgs; [
20 k3s gzip
21 ];
22 services .k3s = {
23 enable = true;
24 role = "agent ";
25 serverAddr = "https :// server :6443";
26 token = k3sToken ;
27 };
28 };
29 };
30 }

Packages

Ports

Services

• Python + Nix (≃ 4000 l.o.c.)
• developing/deploying distributed systems
• single description (in Nix), multiple targets
• docker-compose, VM, ramdisk, system image
• can quickly setup distributed envs locally!
• build, deploy, connect: unique interface
• contextualization (ssh keys, /etc/hosts, etc.)
• integration with Execo [Imb+13]
• a few, but happy, users ,
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Comparisons - Setting up a distributed environments on Grid’5000

Kameleon [Rui+15]

build ↝ modify (add hello) ↝ build
again

EnOSlib [Che+22]

flent

Build Sub + Deploy Provisioning Run
0

100

200

300

Phases

Ti
m

e 
[s

]

EnOSlib nxc−g5k−ramdisk nxc−g5k−image

NixOS Compose ↝ provisioning done in image

↪ Fast builds, faster rebuilds ↝ reduces development cycles
↪ Fast deploys, reduce provisioning phases
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Experiment costs and reproducibility: Wrapping up

Objectives
• Reduce cost of experimenting with

grid/cluster middlewares ✓
• Improve development cycles for

reproducible experiments ✓

Limitations and Perspectives
• More popular Parallel File-Systems
• Source of the performance loss unclear
• Other platforms for NixOS Compose
• Hybrid/folded deployments
• Simulation: PFS and sensors
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Concluding thoughts



Conclusion

Initial Problem

How to harvest HPC idle resources while controlling the impact on the priority jobs?

Contributions

• Design/implement an Autonomic loop in CiGri...
• to control the load of the File-System ↝ control overhead, avoid overload
• to reduce the wasted computing power (idle and killed)

• ... using Control Theory
• yields guarantees and explainability
• guidelines for system administrators, tutorial

• Reduce experiment costs
• reduce number of machines to deploy without loss of realism
• tool for developing and deploying reproducible distributed environments 28/29



Open question

CiGri
Improve usage of computing clusters

Folding
Reduce number of physical machines required to represent a full scale cluster

NixOS Compose
Reduce development time, and reduce "test" deployments

But can it introduce a rebound effect?
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How to choose the reference value?

• Normalized loadavg then fix to 75%, 90%, 95%, etc.

• How much burst to sustain?

• dynamic reference value
• based on number of priority jobs and historical I/O data (e.g., Darshan [Car+11])

ymax yref ,k ek
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yk

-
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(Disturbance)
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Beyond idle resources

Wasted computing power: Idle resources, but also

killed jobs!
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• anticipate variations in
available resources

• new sensor (modify OAR)
• provisional Gantt chart
• horizon

Can reduce both idle and killed time, and energy usage!



Beyond idle resources

Wasted computing power: Idle resources, but also killed jobs!

ek
Controller

uk System

runningk +waitingk

-
+

Priority jobs
(Disturbance)

rmax

rmax yref ,k+-

dh
k

• anticipate variations in
available resources

• new sensor (modify OAR)
• provisional Gantt chart
• horizon

Can reduce both idle and killed time, and energy usage!



Beyond idle resources

Wasted computing power: Idle resources, but also killed jobs!

ek
Controller

uk System

runningk +waitingk

-
+

Priority jobs
(Disturbance)

rmax

rmax yref ,k+-

dh
k

• anticipate variations in
available resources

• new sensor (modify OAR)
• provisional Gantt chart
• horizon

Can reduce both idle and killed time, and energy usage!



Beyond idle resources

Wasted computing power: Idle resources, but also killed jobs!

ek
Controller

uk System

runningk +waitingk

-
+

Priority jobs
(Disturbance)

rmax

rmax yref ,k+-

dh
k

• anticipate variations in
available resources

• new sensor (modify OAR)
• provisional Gantt chart

• horizon

Can reduce both idle and killed time, and energy usage!



Beyond idle resources

Wasted computing power: Idle resources, but also killed jobs!

ek
Controller

uk System

runningk +waitingk

-
+

Priority jobs
(Disturbance)

rmax

rmax yref ,k+-

dh
k

• anticipate variations in
available resources

• new sensor (modify OAR)
• provisional Gantt chart
• horizon

Can reduce both idle and killed time, and energy usage!



Beyond idle resources

Wasted computing power: Idle resources, but also killed jobs!

ek
Controller

uk System

runningk +waitingk

-
+

Priority jobs
(Disturbance)

rmax

rmax yref ,k+-

dh
k

• anticipate variations in
available resources

• new sensor (modify OAR)
• provisional Gantt chart
• horizon

Can reduce both idle and killed time, and energy usage!



Beyond idle resources - Results

Idle Resources Killed Jobs
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Beyond idle resources - Results
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Reusability
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Reusability - Metrics
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How to store the packages?

Usual approach: Merge them all

- Conflicts
- PATH=/usr/bin

/usr
├── bin
│   └── myprogram
└── lib
    ├── libc.so
    └── libmylib.so

Nix approach: Keep them separated

+ Pkg variation
+ Isolated
+ Well def. PATH

+ Read-only

/nix/store
├── y9zg6ryffgc5c9y67fcmfdkyyiivjzpj-glibc-2.27
│   └── lib
│       └── libc.so
└── nc5qbagm3wqfg2lv1gwj3r3bn88dpqr8-mypkg-0.1.0
    └── bin
        └── myprogram
    └── lib
        └── libmylib.so
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