Model-Free Control for Resource Harvesting in Computing Grids CCTA 2022, Trieste

Quentin GUILLOTEAU,* Bogdan ROBU,** Cédric JOIN,† Michel FLIESS,‡ Éric RUTTEN,* Olivier RICHARD*

*Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG
 **Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab
 †CRAN (CNRS, UMR 7039), Université de Lorraine
 ‡LIX (CNRS, UMR 7161), École polytechnique

2022-08-23

Context

Idle HPC Resources \implies Lost Computing Power \rightsquigarrow <u>How to Harvest</u> ?

$$\nearrow$$
 Harvesting \implies \nearrow Perturbations (e.g., I/O) \rightsquigarrow **Trade-off**

 \hookrightarrow Unpredictability \implies **runtime management**

Runtime management

Autonomic Computing and the MAPE-K Loop

Auto-regulating Systems given high-level objectives <u>Phases</u>: Monitor \rightsquigarrow Analyse \rightsquigarrow Plan \rightsquigarrow Execute (with Knowledge)

Control Theory (Feedback Control Loop)

Regulate the behaviour of dynamical systems \hookrightarrow Interpretation of the MAPE-K Loop

1 Introduction & Context

2 The Problem to Tackle

3 Experimental Validation

CiGri: Submission Loop (1/2)

Algorithm 1: Current Solution

```
rate = 3:
increase factor = 1.5;
while tasks not executed in b-o-t do
   if no task running then
       submit rate tasks:
       rate = \min(rate \times
        increase factor, 100);
   end
   while nb of tasks running > 0
     do
       sleep during 30 sec;
   end
```


end

CiGri: Submission (2/2)

The Issue

Must wait for termination of the previous submission to submit again \hookrightarrow reduce overload but introduce **under-utilisation** of the resources

Degradation of the File System Performances

 \nearrow Jobs $\implies \nearrow I/0 \implies \nearrow$ More delay for users \rightsquigarrow Perturbations

Prossessing Time of a Write request by file size and sub. size

Our Global Problem and Objectives

loadavg

I/O

File-Sys.

MFC for Resource Harvesting in Computing Grids | The Problem to Tackle

Usual Method (e.g., PID) and Difficulties

 \hookrightarrow take into account current state of cluster \rightsquigarrow use Control Theory

What is Model-Free Control ?

Model-Free Control

- Introduces intelligent Controllers (iPID)
- Easier to tune
- Adapt to the plant

- *u_k*: #jobs *CiGri*
- \dot{y}_k^{\star} : Derivative of ref. value

Problem Objective

Apply Model-Free Control (*iP*) to the injection of *CiGri* jobs to regulate the load of the FS

$$\hat{F}_k = \frac{y_k - y_{k-1}}{\Delta t} - \alpha \times u_k u_{k+1} = \frac{-\hat{F}_k - \dot{y}_k^* + K_p \times e_k}{\alpha}$$

• \hat{F}_k : Estimation of the model

- α: non-physical cst parameter
- *K_p*: Gain of the controller

Dealing with Noisy Sensor

Sensor Noise

Need to compute derivative **but** noisy sensor \implies noisy derivative \hookrightarrow **Filter**/Smooth the output $y: \overline{s_k} = \beta \times s_{k-1} + (\overline{1-\beta}) \times y_k$

Choice of Parameters

Smoothing Factor β

If response to a step y:
$$s_k = \beta \times s_{k-1} + (1 - \beta) \times y = y \times (1 - \beta^k)$$

 \hookrightarrow How many iterations (k) to reach p % of the step (y) ?
 $\hookrightarrow k = 2, p = 0.95$ seems good $\rightsquigarrow \beta = 0.22$

α

Theory tells us: $\alpha \times u$ same order of magnitude as \dot{y} ($\hat{F} = \dot{y} - \alpha \times u$) Amplitude $\dot{y} \simeq 0.1 \times (1 - \beta)$ and $u \in [0, r_{max}] \rightsquigarrow \alpha = \frac{0.1 \times (1 - \beta)}{r_{max}} = 0.008$

Proportional Gain K_p

 ${\cal K}_p imes e$ same order of magnitude as $\hat{F} \rightsquigarrow {\cal K}_p = 0.1 imes (1-eta) = 0.078$

1 Introduction & Context

2 The Problem to Tackle

3 Experimental Validation

4 Conclusion & Perspectives

Quentin GUILLOTEAU | UGA | 2022-08-23

Experimental Validation

Experimental Setup

- Experiments on Grid'5000
- 2 Intel Xeon
 E5-2630 v3
- Emulation of a 100 node cluster
- CiGri jobs:
 sleep + write

 \hookrightarrow Managed to **adapt to** \neq **I/O loads** & main contrib is from model (\hat{F})

Experimental Validation with Disturbances

Comparison with the Original CiGri Solution

Comparison

- \blacksquare MADBench2: tool for testing I/O \rightsquigarrow represents Priority Users
- Vary Reference value & Observe perturbation + #idle resources

1 Introduction & Context

2 The Problem to Tackle

3 Experimental Validation

4 Conclusion & Perspectives

Conclusion & Perspectives

Reminder of the Objective

Collect max idle resources with min perturbations

Results

- Used a Model-Free approach for dynamical resources harvesting
- Good control and tracking for range of I/O loads
- Trade-off between the harvesting and the perturbations

Perspectives

- Investigate changes of behavior based on I/O loads
- Adapt Reference Value based on #Priority Users