Longitudinal Study of Software Environments Produced by
Dockerfiles from Research Artifacts: Initial Design

ACM REP’'25, Vancouver, BC, Canada

Quentin GUILLOTEAU, Antoine WAEHREN, Florina M. CIORBA
2025-07-30

University of Basel, Switzerland

I\/
j/@\}é University
/XN of Basel

Reproducibility, Artifacts, and Longevity

Longevity (ACM REP’24)

e Who are artifacts for? ~ Future researchers 3 Longevity of Artifacts in Leading Parallel and Distributed

Systems Conferences: a Review of the State of the Practice in 2023

e Math proof will not disappear or change

e Conferences recommend using containers

2023 Conferences i
vm-aws 1.3% B ccerio [l eurosys [l ospl e
PPOPP sc -
singularity 1.9% cesconcerrs E
o

WORDS

docker - . 20.1%

0 50 100 150
Number of artifacts
2/9

Docker, Longevity, and Sustainability

Image in binary cache? Long-term binary cache?
Yes 60% I 11.4%
Image recipe available? Long-term binary cache or recipe?
No 1 . 42.9% . 40%
0 10 20 30 0 10 20 30

Number of artifacts

2023 Conferences [J] ccerio] eurosvs [l osoi [propp sc

3/9

Long-term binary cache: improves longevity

but black boxes: difficult to inspect, to build upon
< not necessary if the Dockerfile is reproducible?

Research Questions

Is Docker really suitable for longevous and reproducible research?

(Should Reproducibility Chairs stop recommending Docker as a suitable solution to authors?)

4/9

Research Questions

Is Docker really suitable for longevous and reproducible research?

(Should Reproducibility Chairs stop recommending Docker as a suitable solution to authors?)

- How do the software environments produced by Dockerfiles
evolve through time?

4/9

Study: Take Dockerfiles from Research Artifacts, build them

periodically, and capture the resulting software environment.

Workflow, Data collected, and Frequency

ECG

Artifact Description | Outputs
(Nickel) S
Nickel Verified Description Download Build Extract Packages Info
Nickel Y Interpretor (JSON) Artifact Container Software Env. 9
ickel

Build Status

Artifact Hash

What are we capturing?
e Artifact Hash: Did the content of the artifact change? (what's behind the link)

e Build Status: Did the container build successfully? What were the errors?
e Packages Info: What are the versions of the packages in the SW environment?
- Package Managers (apt, dpkg, pip, conda), Manual Installs. (git, curl/wget)

When are we capturing? And for how long?
9
At the start of each month, for a full year (13 captures) g

Scope of this Preliminary Study

5 artifacts from Euro-Par 2025 ~ all the artifacts using a Dockerfile

e Conference in our field (HPC) ~ we are familiar with SW stacks
e Artifacts published when we finished to develop our workflow ~ “fresh” artifacts

. Docker Base Image used Calling
Artifact
Name Version apt update?

canon_solving ubuntu 22.04 Yes
geijer_how ubuntu 22.04 Yes
hiraga peanuts devcontainers/cpp 1-debian-12 Yes
munoz_fault ubuntu 22.04 Yes
wolff fast ubuntu 22.04 Yes

Table 1: Information about the Dockerfiles from the study.

6/9
From October 1st 2024 to Aoril-1<t2025 Julv 1st 2025 ~ 10 months

Preliminary Results — Per Artifact

Evolution of the packages versions over time for selected Dockerfile studied

canon_solving geijer_how hiraga_peanuts
o
X 100 —
o
£ 23 121 315 e !.. 248 o4 [| ara [aa [0
I 407 396 395 233 29 %9
(100%) (99.5%) 1378 376 (100%) (g, 225 (100%) (99.7%) 332
[¢] (98.19%) (97.9%) (96 705 (ea%) (s34500 372 (98.4%) o] 212 211 (96%) 324 324 4y 79
€ 754 SE9) @99 (5700 o) ol (88.8%)
S ' R 184 191 179 050 OO0 @) o) 273 273
’§ 1 wu%) 9 (122%)
S 504 1 '
(3] 1 1
£ n n
n 1 n
% 254 1]
)]]
X] 1
Q]]
© 04 [[
a 'Vt
Inital 1L 2 3 4 5 6:7 8 9 Initiall 2 3 4 5 6:7 8 9 niiall 2 3 4 5 6 7 8 9

Months after initial build
ubuntu:22.04 update ubuntu:22.04 update
Month when the package version

was introduced in the environment Initial ! 2 . s . 4 . 5 . 6 . 7 . 8 . 9

7/9

After 10 months: ~ 12 to 28% of software env. changed.

Changes (almost) every month!

Preliminary Results — Per Tool

Evolution of the packages versions over time

100 A
754
50 4
254

dpkg git
2037 2024 1025 age o mm— OO O N D D N R e e
(100%) (99.4%) (1“933) (:!-349%:’) 1875 1815 1794 (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

1708
(92%) (89.196) (g8.1%) &) éfif’) (Jio%

0_

20% change

0% change

misc

1004
754
504
254

Packages in environment [%)]

3 E) & 3 3]) 8 3 B)
(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

pip
29
ST DL] |
(82.8%)
17
13 13 13

86%) 13
(44.8%) (44.8%) (44.8%) (44.8%) (44.8%) (44.8%) (44.8%)

0% change
nital 1 2 3 4 5 6 7 8 9

55% change
Inital 2 2 3 4 5 6 7 8 9

Months after initial build

Month when the package version was introduced in the environment

Initial 1

2 sl sl s sl H: o

8/9

Manual installations (git, misc):

more controlled ~ more longevous
but challenging to manage at scale (~ Nix, Guix)

Conlusion and Future Work

How do the software environments produced by Dockerfiles from
Artifacts evolve through time?

Preliminary Results

e Software Env. changed within a month! ~ same period than the AE !

e Only 5 artifacts ® (how significant / representative ?)

Future Work
e Design of the large scale study (How many artifacts? Which conferences?)
e Capture the hash of the base Docker image
e Other containerization tools? Other package managers?

e Wanna help? Contact us! ® 9/9

