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Reproducibility, Artifacts, and Longevity

Longevity (ACM REP’24)

e Who are artifacts for? ~ Future researchers 3 Longevity of Artifacts in Leading Parallel and Distributed

Systems Conferences: a Review of the State of the Practice in 2023

e Math proof will not disappear or change

e Conferences recommend using containers
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Docker, Longevity, and Sustainability

Image in binary cache? Long-term binary cache?
Yes 60% I 11.4%
Image recipe available? Long-term binary cache or recipe?
No 1 . 42.9% . 40%
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Long-term binary cache: improves longevity

but black boxes: difficult to inspect, to build upon
< not necessary if the Dockerfile is reproducible?




Research Questions

Is Docker really suitable for longevous and reproducible research?

(Should Reproducibility Chairs stop recommending Docker as a suitable solution to authors?)
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Research Questions

Is Docker really suitable for longevous and reproducible research?

(Should Reproducibility Chairs stop recommending Docker as a suitable solution to authors?)

- How do the software environments produced by Dockerfiles
evolve through time?
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Study: Take Dockerfiles from Research Artifacts, build them

periodically, and capture the resulting software environment.




Workflow, Data collected, and Frequency
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ickel

Build Status

Artifact Hash

What are we capturing?
e Artifact Hash: Did the content of the artifact change? (what's behind the link)

e Build Status: Did the container build successfully? What were the errors?
e Packages Info: What are the versions of the packages in the SW environment?
- Package Managers (apt, dpkg, pip, conda), Manual Installs. (git, curl/wget)

When are we capturing? And for how long?
9
At the start of each month, for a full year (13 captures) g



Scope of this Preliminary Study

5 artifacts from Euro-Par 2025 ~ all the artifacts using a Dockerfile

e Conference in our field (HPC) ~ we are familiar with SW stacks
e Artifacts published when we finished to develop our workflow ~ “fresh” artifacts

. Docker Base Image used Calling
Artifact
Name Version apt update?

canon_solving  ubuntu 22.04 Yes
geijer_how ubuntu 22.04 Yes
hiraga peanuts devcontainers/cpp 1-debian-12 Yes
munoz_fault ubuntu 22.04 Yes
wolff fast ubuntu 22.04 Yes

Table 1: Information about the Dockerfiles from the study.
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Preliminary Results — Per Artifact

Evolution of the packages versions over time for selected Dockerfile studied
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After 10 months: ~ 12 to 28% of software env. changed.

Changes (almost) every month!




Preliminary Results — Per Tool

Evolution of the packages versions over time
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Manual installations (git, misc):

more controlled ~ more longevous
but challenging to manage at scale (~ Nix, Guix)




Conlusion and Future Work

How do the software environments produced by Dockerfiles from
Artifacts evolve through time?

Preliminary Results

e Software Env. changed within a month! ~ same period than the AE !

e Only 5 artifacts ® (how significant / representative ?)

Future Work
e Design of the large scale study (How many artifacts? Which conferences?)
e Capture the hash of the base Docker image
e Other containerization tools? Other package managers?

e Wanna help? Contact us! ® 9/9



