
Minimizing Cluster under-use with a
Control-based approach

Quentin Guilloteau

Thursday 25th June, 2020

Supervisors: Olivier RICHARD (DATAMOVE) & Eric RUTTEN (CTRL-A)
In Collaboration with Gipsa Lab



Introduction

2/32



High Performance Computing (HPC)

HPC

HPC systems are more and more complex:

unpredictable in runtime performances

unpredictable in energy consumption

unpredictable in data access time

Potential Problems

Overloading

Overheating

↪→ need runtime management to meet performance objectives

A Possible Solution

Autonomic Computing

3/32



Autonomic Computing

Definition

Systems that can manage themselves given high-level
objectives from administrators

Main tool: the MAPE-K Loop

1 Monitor

2 Analyse

3 Plan

4 Execute

5 Knowledge
Sensor Actuator

Managed Element

Monitor

Analyse Plan

Execute

Knowledge

4/32



Control Theory

Control Theory

Manages the control of continuously dynamical systems
(i.e. make systems behave in a desired way)

↪→ Interpretation of MAPE-K loop

Reference Error
Controller

System

input
System

System output

Sensor
Measured

output

-

+

Challenges

↪→ Control Theory requires models, testing controllers, etc

5/32



Reproducibility

Definition

Make Science:

Repeatable (same experiment, same results)

Replicable (same experiment with different input)

↪→ More importantly, Verification & Reusability

In the context of this Project

Control Theory models based on experimental results
↪→ Requires experiments of quality

6/32



Outline

1 Introduction

2 The CiGri Middleware

3 Minimize Cluster under-use while regulating the Load

4 The Quest of Reproducibility: Transposition

5 Conclusion

7/32



The CiGri Middleware

8/32



CiGri - Presentation

CiGri (CIMENT Grid)

Lightweight fault-tolerant
grid middleware application

Runs on top of a set of OAR
clusters

Goal: Exploit unused
resources of a cluster

bag-of-tasks: Large sets of
multi-parametric tasks

Best-effort Jobs: Jobs with
lowest priority

9/32



CiGri - Submission Loop (1/2)

Algorithm 1: Submission Loop

rate = 3;
increase factor = 1.5;
while jobs left in bag-of-tasks

do
if no running jobs then

launch rate jobs;
rate = min(rate ×
increase factor , 100);

end
while jobs running > 0 do

sleep until timeout;
end

end

10/32



CiGri - Submission Loop (2/2)

Issue

Must wait for completion of previous submission to submit again
↪→ reduce overload but can lead to under-utilisation

Time

R
es

ou
rc

es

OAR JobOAR Job

OAR JobOAR Job

OAR JobOAR Job

OAR JobOAR Job

OAR JobOAR Job

CiGri JobCiGri Job

CiGri JobCiGri Job

CiGri JobCiGri Job CiGri JobCiGri Job

CiGri JobCiGri Job

OAR JobOAR Job

CiGri JobCiGri Job

Submission #1 Submission #2

Id
le

11/32



CiGri - The need for improvement

Observation

Current CiGri algo too protective
↪→ could be improved if takes into account state of the cluster

Idea

Regulate the number of jobs submitted to OAR w.r.t. number of
idle resources in the cluster
Add constraints (e.g. Load of the fileserver)

State-of-the-art / Previous Work

Applied Autonomic Computing to CiGri

12/32



Minimize Cluster under-use while regulating the
Load

13/32



Introduction & Previous Work

Objective

Submit jobs to OAR while keeping load of fileserver under a given
value

Model Based Controller

Use models of the system to make prediction

Conclude the best number of jobs to send

14/32



Introduction & Shortfall

Problem

Originally, CiGri submission to OAR composed of jobs from same
campaign, thus same behaviour
↪→ could lead to some under-utilisation

Load Reference

Time

Load

Exploitable

Submission Submission

Load Reference

Time

Load

Submission

Use case

Submitting jobs from two campaigns with different IO loads

15/32



Proposed Controller

Presentation: Two modes of control

1 The total number of jobs sumbitted to OAR (”big step”)

2 The percentage of IO heavy jobs submitted (”small step”)

Proportional Controller: Response proportional to the Error

Output = k× Error = k× (Ref − Load)

Load Reference e
e ?

Nb jobs

< T
% IO heavy

≥ T

System
Output

Load Sensor
Load

-

+

16/32



Experimental Setup

Architecture

Grid5000 (Nancy Grisou: 2 Intel Xeon E5-2630v3, 8
cores/CPU, 128 GiB)

1 CiGri (v3) server

1 OAR (v3) server

1 Fileserver (NFS)

100 nodes

Experiment

IO heavy campaign: 1000 jobs: sleep 30s, writes 10 MB file

IO light campaign: 1000 jobs: sleep 30s

Regulate load around value 3 (chosen by admin.)

Threshold value of 1
17/32



Experimental Results

0

25

50

75

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
time

P
er

ce
nt

ag
e 

of
 IO

 h
ea

vy
 jo

bs

0

10

20

30

0 200 400 600 800 1000 1200 1400 1600 1800 2000
time

N
um

be
r 

of
 J

ob
s

0

2

4

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000
time

Lo
ad

1

2

Takeaways

1 Rising phase

2 then small
steps

3 Kept load in
interval

4 Kept load
mostly < Ref

18/32



Discussion on the Control Theory Approach

Results

Improved cluster utilisation compared to model based approach:
25% vs. 6%
(Difficult to have precise models)
(Utilisation depends on chosen reference value)

Future Work

proof-of-concept

need further testing

try with more complex controllers

different ways to switch between modes

how to categorize campaigns (heavy or light) ?

19/32



The Quest of Reproducibility: Transposition

20/32



Transposition: Motivation

G5K

CiGri OAR Nodes Fileserver

Node Node Node Node

Nb idle
resources

loadavg

CiGri Jobs Schedule Jobs Write

Read

Motivation

Not everyone has access to multiple machines

Long deployment time (' 15 minutes)

Long development time

↪→ Using a container approach: faster & lightweight
21/32



Transposition: Definition & Questions

Definition

Transpose a system to a different platform while keeping
guarantees on the behaviour

↪→ Transpose feedback loops and sensors to containers

Scientific Questions

Are the experiments (distributed & container) comparable ?

Can we learn enough about the system with containers ?

Can we develop new models/controllers, meaningful on all
platforms ?

↪→ Study with Nix
22/32



Nix: a Tool to improve Reproducibilty

Nix

Functional Package Manager

Nix language: declarative def. of complete software stack

Reproducible: Tracability of builds

Reliable: roll back & cannot break other packages

23/32



Arion = Nix + docker-compose

Node

CiGri OAR Nodes Fileserver

Docker

Nb idle
resources

loadavg

CiGri Jobs Schedule Jobs Write

Read

Docker Docker Docker

Arion

Nix wrapper around docker-compose

24/32



Arion - Common Configuration (Snippet)

Figure: Arion: Common configuration of a node

25/32



Arion - Node Configuration (Snippet)

26/32



Architecture - Containers & new Problem

Node

CiGri OAR Nodes Fileserver

Docker

Nb idle
resources

loadavg

CiGri Jobs Schedule Jobs Write

Read

Docker Docker Docker

Problem

Sensor /proc/loadavg not available in container
↪→ How to transpose the feedback loop ?

27/32



loadavg - Computation by Hand in a Container

loadavg

Number of jobs in the running queue or waiting for the disk

↪→ Processes on fileserver: nfsd processes (from NFS server)
↪→ Compute loadavg by counting nfsd processes

New Problem

NFS Server → Kernel processes: not visible inside container
↪→ but visible from the host

0

1

2

0 200 400
time

lo
ad

av
g

Grid5000 − Loadavg

0

1

2

0 200 400
time

lo
ad

_m
od

el

Grid5000 − nfsd

0

1

2

0 200 400 600
time

lo
ad

_m
od

el

Arion − nfsd

28/32



Discussion

Lessons Learned

Faster Deploy. & Dev. w/ Nix and Arion (1 min vs. 15 mins)

Transpo.: Not looking for identical behaviour, but similar for
some priorities

Open Questions

Change the metric (pseudo-loadavg or new one) ?

Same models (for Arion & G5K) with different parameters ?

Impact of a different sensor for the design of a controller ?

29/32



Conclusion

30/32



Conclusion & Contributions

Conclusion

New controller for minimizing cluster under-use while
regulating the load of the fileserver

Transposition to a container approach

Contibutions

Designed and Implemented Controller to improve granularity

Investigation on Transposition

Runnable Lab Notebooks w/ OrgMode (collab. Gipsa Lab)

31/32



Future Work

Continue the transposition to containers

Tests controllers on different types of workloads

Nix + Grid5000 = to complete

Control number of jobs submitted w.r.t. other metrics (e.g.
energy consumption)

32/32



Questions ?

Thank you for your attention.
Time for Questions !

33/32



loadavg - Computation by Hand on G5K & Validation

0

1

2

3

0 200 400
time

lo
ad

colour loadavg model load

Comparison of loadavg and the handmade load computation

34/32



loadavg - a Quick Presentation

Definition

Output of /proc/loadavg

Represents the number of jobs in the running queue or waiting
for the disk

Computed as an exponential weighted sum of the number of
jobs

fi =
(

1− e−T
)
fi−1 + nie

−T

Why is it an interesting metric ?

Provides a sense of overload
↪→ Rule-of-thumb: if loadavg > number of cores, then overload

35/32


	Introduction
	The CiGri Middleware
	Minimize Cluster under-use while regulating the Load
	The Quest of Reproducibility: Transposition
	Conclusion
	Backup

