# Polynomial-Time Approximation Scheme 

DANG Vu Lam GUILLOTEAU Quentin

Monday $1^{\text {st }}$ April, 2019

## Table of Contents

1 PTAS: Definition

2 Application to the Bin packing problem

- The Bin packing problem
- First Fit Algorithm
- Restricted instances
- Number of sizes is less than $n$
- All sizes $\geq \varepsilon$
- General Case
- Comparison


## PTAS: Definition

## PTAS: Definition

## Definition (Minimization problem)

A PTAS is an algorithm A, which takes an instance of an optimization problem I and a parameter $\varepsilon>0$ and produces, in polynomial time (in $n$ for a fixed $\varepsilon$ ) a solution $A(I) \leq(1+\varepsilon) \times O P T(I)$

## Definition (Maximization problem)

A PTAS is an algorithm A, which takes an instance of an optimization problem I and a parameter $\varepsilon>0$ and produces, in polynomial time (in $n$ for a fixed $\varepsilon$ ) a solution $A(I) \geq(1-\varepsilon) \times O P T(I)$

Where $O P T(I)$ is the optimal solution of the optimization problem for the instance $I$.

## FPTAS and Asymptotic PTAS: Definition

## Definition (FPTAS)

A FPTAS (Fully Polynomial-Time Approximation Scheme) is a PTAS that runs in polynimial time in $n$ and in $\frac{1}{\varepsilon}$

## Definition (Asymptotic PTAS)

An Asymptotic PTAS is an algorithm A, which takes an instance of an optimization problem I and a parameter $\varepsilon>0$ and produces, in polynomial time (in $n$ for a fixed $\varepsilon$ ) a solution $A(I) \leq(1+\varepsilon) \times O P T(I)+C(\varepsilon)$

## Application to the Bin packing problem

The Bin packing problem

## The Bin Packing Problem (BPP)

## Setup

Given a set of bins $S_{1}, S_{2} \ldots$ with the same size 1 and a set of $n$ items with sizes $s_{1}, s_{2}, \ldots, s_{n}$ and $\forall i, 1 \leq i \leq n, s_{i} \in[0,1]$.

## Goal

Find

- the minimal (integer) number of bins $B$
- a $B$-partition $S_{1} \cup \cdots \bigcup S_{B}$ of $\{1, \ldots, n\}$ such that: $\forall k \in\{1, \ldots, B\}, \sum_{i \in S_{k}} s_{i} \leq 1$

First Fit Algorithm


三 つのく

## First Fit Algorithm

## Algorithm

1 For each items $s_{i}$ find the first bin that fit
2 If no bins fit, order new bin
3 Until no more items left

## Remark

- 2 - approximation
- How can we improve?


## Restricted instances

## PTAS for BPP - Number of sizes is less than $n$

## Theorem

For all instances of the BPP where the number of different item-sizes is $\mathrm{K}(K<n)$, there is a polynomial algorithm for solving these instances.

## Proof

We can represent a bin as a K-uplet $\left(x_{1}, \ldots, x_{K}\right)$, where $x_{i}$ represents the number of element of size $s_{i}$ in the bin.
As, $\forall i, x_{i} \leq n$, there are $O\left(n^{K}\right)$ possible bins.
A feasible solution requires at most $n$ bins.
Thus, there are $O\left(n^{K+1}\right)$ feasible packings.

## Algorithm

Brute force all the feasible packings !

## PTAS for BPP - All sizes $\geq \varepsilon$

## Theorem

For all instances of the BPP where $\forall i, s_{i} \geq \varepsilon$, there is a $(1+\varepsilon)$-approximation algorithm

## PTAS for BPP - All sizes $\geq \varepsilon$

## Algorithm

1 Sort the sizes $s_{i}$ such that $s_{1} \leq s_{2} \leq \cdots \leq s_{n}(O(n \log n))$
2 Partition the items into $K$ groups, each with the same number of elements inside ( $Q=\frac{n}{K}$ ) (except the last one)
3 Round every size in each group to the maximum size in the group ( $O(n)$ )
4 Brute force the solution for this new instance $J$ (as seen before) $\left(O\left(n^{K+1}\right)\right)$
5 Return the packing of J as a packing of I

## PTAS for BPP - Finding K

## Instances Memo

■ I : Input instance

- J : I rounded up

■ J': I rounded down

- $J_{Q}: J$ without the last group
- $J_{Q}^{\prime}: J^{\prime}$ without the first group


## Computation of K

$$
\begin{aligned}
O P T(J) & \leq O P T\left(J_{Q}\right)+Q \leq O P T\left(J_{Q}^{\prime}\right)+Q \\
& \leq O P T\left(J^{\prime}\right)+Q \leq O P T(I)+Q
\end{aligned}
$$

## PTAS for BPP - Finding K

$$
\begin{aligned}
O P T(J) & \leq O P T(I)+Q \\
& \leq O P T(I)+\frac{n}{K} \\
& \leq O P T(I)+\frac{1}{K} \sum_{i=1}^{n} \frac{s_{i}}{\varepsilon} \\
& \leq O P T(I)+\frac{1}{K \varepsilon} \sum_{i=1}^{n} s_{i} \\
& \leq O P T(I)+\frac{1}{K \varepsilon} O P T(I) \\
& \leq\left(1+\frac{1}{K \varepsilon}\right) O P T(I)
\end{aligned}
$$

## PTAS for BPP - Finding K

Value of K

$$
\frac{1}{\varepsilon K}=\varepsilon \Longrightarrow K=\frac{1}{\varepsilon^{2}}
$$

General Case

## PTAS for BPP - General Case

## Algorithm

1 Consider I' the instance obtained by keeping only from I (input instance) all the items with a size $\geq \varepsilon$
2 Solve I' with the $(1+\varepsilon)$-approximation algo $\left(O\left(n^{K+1}\right)\right)$
3 Apply First Fit on the resulting packing using items with a size $<\varepsilon(O(n))$
4 Return the packing
General case algorithm: $O\left(n^{K+1}\right)=O\left(n^{\frac{1}{\varepsilon^{2}}+1}\right)$ If $\varepsilon=0.01$, algorithm in $O\left(n^{10001}\right)$

## PTAS for BPP - General Case

## Theorem

The previous algorithm finds a packing with at most $(1+2 \varepsilon) \times O P T(I)+1$ bins (for $\left.\left.\varepsilon \in] 0, \frac{1}{2}\right]\right)$

## Proof

Let $B$ be the number of bins returned by the algorithm.

- If no extra bin is needed:

$$
B \leq(1+2 \varepsilon) \times O P T\left(I^{\prime}\right) \leq(1+2 \varepsilon) \times O P T(I)
$$

- Else: The available space in each of the first $B-1$ bins is less than $\varepsilon$

$$
\begin{aligned}
& \operatorname{OPT}(I) \geq \sum_{i} s_{i}>(B-1) \times(1-\varepsilon) \Longrightarrow B<\frac{O P T(I)}{1-\varepsilon}+1 \\
& \frac{O P T(I)}{1-\varepsilon}+1 \leq(1+2 \varepsilon) O P T(I)+1
\end{aligned}
$$

## Comparison

## Comparison

$$
n=20
$$



Figure: First Fit (12 bins)
Figure: PTAS with $\varepsilon=0.5$ (11 bins)

